Alzheimerın ilk belirtileri gözlerde başlıyor

Demans hastalığı(bunama), Tau ve Beta-Amiloid adında iki proteinin beyinde birikmesi ile ortaya çıkar. Hastalıkla birlikte beyinde hücre ölümleri ve nöronlar arasındaki bağlantılar kopmaya başlar. Sinir hücrelerinin ölümü hastaları giderek daha unutkan, şaşkın ve dünyadan kopuk hale getirir. Birçok hastada huzursuzluk, agresif davranışlar veya depresif ruh hali görülür.

Hastalığın çeşitli formları var

Demansın çeşitli nedenlerden kaynaklanan farklı türleri vardır. Alzheimer bunlardan sadece biridir ve en yaygın görülen formudur. Tüm demans hastalarının % 60 ila 80’ini Alzheimer oluşturur.

Alzheimer’dan sonra en sık görülen ikinci demans hastalığı Lewy cisimcikli demans dır. Bu form, α-sinüklein proteinlerinin beyinde anormal katlanması ile gelişir. Bunların dışında inme ile ilişkili olan Vasküler demans ve bir başka form olan Frontal lob demansı bulunmaktadır. Ayrıca, ilerleyen yaşa bağlı olarak Hafif bilişsel bozulmalar(MCI) ile Parkinson ve Huntington hastalığı gibi bazı nörolojik hastalıklara bağlı olarak gelişen demans türleri de vardır.

Hastalığın yaygın semptomları arasında hafıza kaybı, düşünme zorluğu, oryantasyon bozukluğu ve diğer bilişsel gerilemeler bulunmaktadır. Hastalar bunun dışında görme problemleri, mekansal derinlik algısında problemler de yaşayabilmektedir. Bazı hastalarda okuma problemi, hareketli nesneleri izleme veya kontrast problemleri gibi optik problemler de görülür.

Araştırmalarda yeni stratejilere ihtiyaç var

Alzheimer, şu an için tedavi edilemeyen bir hastalıktır. Alzheimerın gerek nedenleri gerekse tedavisi ile ilgili yapılan araştırmalar genelde iki faktör ön planda tutularak yapılmaktadır. Bunlar, beyindeki nöronları tahrip eden ve bilişsel işlev bozukluğunun ortaya çıkmasına sebep olan Tau ve Beta-Amiloid proteinleri ile ilgili yapılan çalışmalardır. Yoğun araştırmalara rağmen, beyindeki sinir hücrelerinin kaybını durduracak bir ilaç henüz bulunamadı. Hastalık ilerledikten ve alzheimer bir kez ortaya çıktıktan sonra beyin hücrelerinin çöküşünü durdurabilmek hemen hemen imkansız gibidir. Hastalığın seyrini geciktirici ve semptomlarını hafifleteci ilaçlar olmasına rağmen bunların etkileri hem kısıtlı hem de hastaların sadece yüzde 50’sinde fayda göstermektedir.

Hastalığın tedavisinde erken teşhis çok önemli

Hastalığın ilk belirtileri ortaya çıkmadan çok önce, hatta onlarca yıl öncesinden beyin hasar görmeye başlamaktadır. Hastalığın tedavisinde erken teşhis çok önemli olmasına rağmen maalesef birçok vakada geç kalınmaktadır. Beyin hasarının erken saptanması hastalığın ilerlemesini yavaşlatmak bakımından çok önemlidir.

Tehişte klasik yöntemler kullanılıyor: Hastaya alzheimer tanısı ancak bir dizi değerlendirme ve testten sonra konulabilmektedir. Bunlar bilişsel testler, aile üyeleri ile konuşma, fiziki muayene ve beyin görüntüleme tarama teknikleri gibi klasik sayılabilecek yöntemlerdir. Ama bu testlerin hiçbiri Alzheimer’ı %100 teşhis etmek için yeterli değildir. Zira bu testler ve beyin taramaları sadece demansın tipini daraltmaya, benzer semptomlar gösteren diğer hastalıkları ekarte etmeye yardımcı olur. Alzheimer için kesin teşhis ancak hasta öldükten sonra beyin dokusundan alınan örneklere yapılacak patolojik testler ile mümkündür.

Gözlerin durumu birçok hastalık hakkında bilgi veriyor

Göz muayenesi, Kardiyovasküler hastalıklar, İnme, Diyabet, Hipertansiyon, Multipl skleroz, Romatizmal hastalıklar, Parkinson, Cinsel yolla bulaşan hastalıklar, Deli dana hastalığı ve bazı Kanser türlerini teşhis etmede gerek duyuldukça kullanılmaktadır. Son yıllarda yapılan çalışmalar ile bu listeye Alzheimer da dahil edilmek üzere.(1),(2)(3),(4),(5),(6)

Alzheimer’ın ilk belirtileri gözlerde başlıyor

Gözdeki optik sinirler, beyni doğrudan gözün arkasına bağlar ve beyin gözün topladığı görsel bilgileri bizim anlayabileceğimiz bir resme dönüştürür. Beyin ile göz arasındaki bu ilişki birçok göz doktoru ve nörologun hep ilgi odağında olmuştur.

Son yıllarda yapılan çalışmalar ile alzheimer’ın erken safhasında yani hastalığın semptomları henüz ortaya çıkmadan yıllar önce, gerek gözün Retina tabakasında gerekse, Göz bebeklerinde bir takım değişiklikler olduğu tespit edildi. Bu önemli bulgunun hastalığın erken teşhisi ile ilgili yapılan çalışmalarda yeni bir dönüm noktası olacağı kesin. Bu araştırmalar her ne kadar şimdilik oldukça küçük çaplı münferit çalışmalar olsa da ileride yapılacak daha büyük çalışmalara zemin hazırlaması açısından oldukça anlamlı.

Araştırmalarda iki görüntüleme tekniği kullanıldı

Hastalığın erken teşhisi ile ilgili yapılan bu çalışmaların bir kısmı göz içinde kan akışı değişikliklerini tespit etmeye yarayan ve oldukça hızlı sonuç alınan Optik koherens tomografi (OCT) adında bir teknikle yapıldı. (Birçok oftalmolog(göz bilimci), muayenehanesinde bu testi yapacak temel teknik donanıma sahip olmakla birlikte bu testleri alzheimer tanısında rutin olarak kullanmak şimdilik erken görünüyor!)

Araştırmalarda kullanılan bir başka teknik ise oldukça yeni sayılabilecek bir teknoloji. Fluorescence lifetime imaging ophthalmoscopy (FLIO) adı verilen bu görüntüleme tekniği ile retinada beta-amiloid plakları ölçüldü. (Bilindiği gibi bu plaklar aynı zamanda Alzheimer hastalarının beyninde de birikiyor.)

İki örnek araştırma

  1. Gözün retina tabakasında meydana gelen değişiklikler ile ilgili yapılan çalışma: Washington Üniversitesi Tıp Fakültesi tarafından yapılan ve Kasım 2018 tarihinde JAMA Oftalmoloji dergisinde yayınlanan araştırmada hastaların beyninde tipik plaklar birikmeye başladığında retina tabakasının inceldiği ve retinanın geniş bir alanında kan damarlarının bulunmadığı tespit edildi(7). Bunun neden böyle olduğu şimdilik tam olarak bilinmiyor ama muhtemelen bu durum Retina ve Merkezi sinir sisteminin birbiriyle sıkı sıkıya bağlantılı olmasından kaynaklanıyor olabilir.
  2. Göz bebeği ile ilgili yapılan çalışma: San Diego Üniversitesi tarafından yapılan ve Kasım 2019 tarihinde Neurobiology of Ageing dergisinde yayınlanan araştırmada hastaların göz bebeklerinin daha genişlemiş olduğu tespit edildi.

Açıklama: Göz bebeklerinin reaksiyonları, Locus Coeruleus denilen bölge tarafından kontrol edilir. Beyin sapında yer alan ve nöron kümelerinden oluşan bu bölge, bilişsel işlevlerin uyarılmasından ve düzenlenmesinden sorumludur. Bu alan aynı zamanda göz bebeklerinin genişlemesini kontrol eden bölgedir.

Araştırmada hastalığın ilk evrelerinde Tau Proteini’nin ilk olarak bu bölgede birikmeye başladığı tespit edildi ve buradan yola çıkılarak göz bebekleri ile alzheimer arasında bir ilişki olabileceği konusunda bir hipotez geliştirildi. Bu hipotezin doğru olup olmadığını kontrol etmek amacı ile sağlıklı ve Alzheimer riski yüksek olan yani Locus Coeruleus’a Tau Proteini birikmeye başlamış kişilerden oluşan iki grup incelemeye alındı.

Sonuç olarak her iki gruptan aşağı yukarı aynı veriler elde edilse de, hafif bilişsel bozukluğu olan bireylerin, yani beynin Locus Coeruleus bölgesinde Tau Proteini birikmeye başlamış grubun göz bebeklerinde daha fazla genişleme olduğu bulundu.(8)

Alzheimer riskini önceden belirlemede yeni yöntem: Göz testi

Dünyada 35 milyon, Türkiye’de ise 400 bin Alzheimer hastası olduğu tahmin ediliyor. Alzheimerı erken teşhis etmemize veya anlamamıza yardımcı olabilecek şimdilik herhangi bir rutin göz testi yok. Ancak göz ve beyin dokuları arasındaki ilişkiyi inceleyen araştırmalar heyecan verici ve bu konuda büyük potansiyel olduğunu gösteriyor. Yakın bir gelecekte genetik olarak risk grubunda bulunanlar ile hafif bilişsel bozukluk başlamış olanlar, hatta semptomlar daha henüz ortaya çıkmamış olanlar herhangi bir göz doktorunda yapılacak basit bir göz testi ile Alzheimer riski taşıyıp taşımadığını öğrenebilecek.


Benzer konuda hazırlanmış diğer makaleler


Mehmet Saltuerk

++++++++++++++++++++++++
Dipl. Biologe Mehmet Saltürk
The Institute for Genetics
of the University of Cologne
++++++++++++++++++++++++

Kaynaklar

  1. The eye and the heart
  2. Retinal Microvascular Changes and Risk of Stroke
  3. Visual Symptoms During Hypoglycemia: A Case Series
  4. Ocular manifestations of rheumatic diseases
  5. Assessing Retinal Structure in Patients with Parkinson’s Disease
  6. Prion Seeds Distribute throughout the Eyes of Sporadic Creutzfeldt-Jakob Disease Patients
  7. Association of Preclinical Alzheimer Disease With Optical Coherence Tomographic Angiography Findings
  8. Pupillary dilation responses as a midlife indicator of risk for Alzheimer’s disease: association with Alzheimer’s disease polygenic risk

Bu blogdaki makaleler bir başka yayın organında kaynak gösterilmeden yayınlanamaz, çoğaltılamaz ve kullanılamaz.

Hücre dönüşümü aterosklerozda kalp krizine karşı koruma sağlıyor

Ateroskleroz, ya da halk arasında bilinen adıyla “Damar Sertliği” atardamarların(arterler) iç katmanlarına yerleşen plakların (yağ, kolesterol ve moleküler partiküller) birikmesi ile gelişen ve zamanla damarın daralarak tıkanmasına sebep olan bir hastalıktır.

Hastalığın etkisi hangi damarları etkilediğine bağlı olarak değişir. Hastalığın en sık rastlanan ve korkulan sonucu kalp krizi ve felçdir.

Plakların damarın iç katmanları arasında aşırı birikmesi bazen dokunun yırtılmasına ve plakların kana karışarak daha ince damarların tıkanmasına sebep olur. Bazen plakların bulunduğu doku hiç yırtılmaz. Böyle durumlarda arterin iç duvarı damar tamamen kapanana kadar şişmeye(Anevrizma) devam eder. Her iki durumda da damar tarafından beslenen organa yetersiz kan gitmiş olur. Eğer zamanında fark edilip önlem alınmazsa her iki durumda da kalp krizi ve inme gibi ciddi sağlık sorunları ortaya çıkar.

Hastalığın ilerleme hızında farklılık var

Hastalığın seyri kişiden kişiye farklılık göstermektedir. Örneğin dokunun yırtılarak plakların kan damarlarının içine dökülmesi bazı hastalarda çok erken safhada olurken, bazılarında oldukça geç safhada gerçekleşmektedir. Hatta bazı hastalarda damar tamamen tıkanana kadar bu yırtılma hiç gerçekleşmemektedir. Hastadan hastaya değişen bu durum bilim çevrelerinin ilgisini çekmesine rağmen şu ana kadar sebebin ne olduğu bilinmiyordu.

Yeni tedavi imkanlarının yolunu açacak bir araştırma

Her ne kadar sağlıksız beslenme, hareketsiz yaşam tarzı ve sigara alışkanlığı Aterosklerozun ortaya çıkmasında önemli rol oynasa da, hastalığın hızlı yada yavaş ilerlemesinde genetik faktörlerin rolü göz ardı edilemeyecek kadar önemli yer tutmaktadır. Ama şu ana kadar yapılan genetik çalışmalarda bu konuda hangi genlerin aktif rol aldığı, hangi biyokimyasal süreçlerin etkili olduğu tam olarak bilinmiyordu. Stanford Üniversitesi Tıp Fakültesi, Kardiyovasküler Anabilim Dalı tarafından yapılan bir araştırma ile bu konudaki bilinmezlik büyük ölçüde aydınlığa kavuştu. Nature Medicine dergisinde yayınlanan bu araştırmada Ateroskleroz sürecinde hangi genin etkili olduğu da tespit edildi.

Aşağıda ayrıntılarını okuyacağınız bu araştıra hiç kuşkusuz ateroskleroz ve emboliye bağlı olarak gelişen kalp krizi riskini azaltmaya yönelik tedavilerde yeni bir başlangıç noktası olacak.

Hastalığın seyrini değiştiren hücre dönüşümü

Sağlıklı koşullar altında, arter duvarını oluşturan Düz kas hücreleri, damarın genişlemesini ve daralmasını kontrol eder. Düz kas hücreleri bu işlemi kan akışını ve kan basıncını düzenlemek için uzayarak ve büzülerek yapar.

Düz kas hücreleri Fibromiyozit lere dönüşüyor: Ateroskleroz başlayan kişilerde, plaklar damar duvarın alt katmanlarında birikerek damarın iç kısmının daralmasına sebep olur. Damarlarda plak oluşmaya başladığı zaman düz kas hücreleri plakların bulunduğu hasarlı bölgeye doğru ilerler. Bu aşamada vücut oluşan plakların artere girmesini önlemek için o bölgedeki kas hücrelerini Fibromiyozit lere dönüştürerek Lifli Kapsül(fibrous cap) denilen kese benzeri yapı oluşturur. Başka bir ifade ile Lifli Kapsül damarın iç katmanlarında kolesterol, yağ ve moleküler artıkları çepeçevre sararak onların etrafa dağılmasını önler, yani plakları stabilize eder. Lifli Kapsül ne kadar sağlam olursa yırtılma riski de o kadar az olur.

(Not: Aslında düz kas hücrelerinin ateroskleroz sırasında kendilerini başka bir hücreye dönüştürdüğü biliniyordu ama dönüşen yeni hücrelerin neye benzediği bilinmiyordu. Bu konudaki tahminler dönüşen hücrelerin hem faydalı, hem de iltihaplanmayı teşvik eden zararlı immün hücrelere dönüştüğü yönündeydi.)

Dönüşümün arkasında TCF21 geni var

Araştırmayı yapan Quertermous ve ekibi ateroskleroz sırasında düz kas hücresinden fibromiyozit e geçişi tetikleyen TCF21  adındaki geni de tanımlayarak bir adım daha ileri gittiler. Dahası, popülasyon çapında yapılan genomik çalışmalarda düz kas hücrelerinin gen aktivitesinin azaldığı, buna karşılık fibromositlere dönüşen hücrelerin gen aktivitesinin arttığı tespit edildi. Ayrıca gen aktivitesi fazla olan kişilerde kalp krizi riskinin daha az olduğu da belirlendi.

Aslında Quertermous daha önce yapmış olduğu bir çalışmada TCF21 genin koroner arter hastalık riski ile ilişkili olduğunu zaten tespit etmişti. Bu yüzden TCF21 geninin ateroskleroz sırasında düz kas hücresinden fibromiyozit e geçişinde de kilit bir oynayabileceğini düşündü ve bu teorinin doğru olup olmadığını test etmek için aterosklerozlu farelerde TCF21 genini devre dışı bıraktı. TCF21 geninin devre dışı bırakılması ile birlikte farelerde daha az sayıda Fibromiyosit Hücre ve aynı zamanda daha dayanıksız Lifli Kapsül oluştuğu görüldü.

Bu durum yukarıda belirtildiği gibi Lifli Kapsülün yırtılarak plakların damarın içine dökülmesine ve buna bağlı olarak kalp krizi ve inme riskinin yükselmesine neden oluyor.

Araştırmada „Lineage tracing“ adında bir teknik kullanıldı

Düz kas hücrelerinin nasıl dönüştüğü ve nereye göç ettiğini bulabilmek için lineage tracing(iz takibi) adı verilen bir teknik kullanılarak hücrelerin hareketi takip edildi. Bunun için ateroskleroz olan farelerin damarlarında bulunan düz kas hücreleri mikroskop altında kırmızı görünecek şekilde özel bir kimyasal madde ile etiketlendi. Daha sonra düz kas hücrelerinin nereye göç ettiği ve neye dönüştüğü kontrol edildi. İşlem sonunda kırmızı etiketli düz kas hücrelerin bazılarının, damardaki esas bulundukları bölgeden plakların bulunduğu bölgeye doğru göç ettiği tespit edildi.

Aynı deney insanlarda da tekrarlandı

Farelerden elde edilen bu sonuçların insanda bir karşılığının olup olmadığını anlamak için kalp nakli yapılan aterosklerozlu hastalardan doku örnekleri alındı. İnsan arterlerinden alınan bu hücrelere de tıpkı farelerde kullanılan metotlar uygulandı. Gerek düz kas hücrelerinin fibromositlere dönüşmesi, gerekse gen analizler sonuçları farelerden elde edilen sonuçlar gibiydi. Yani düz kas hücrelerinin gen aktivitesinin azalırken, fibromositlere dönüşen hücrelerin gen aktivitesinin arttığı bulundu.

Sonuç 

Kalp krizi ve inme gibi Ateroskleroza bağlı hastalıkların süresinin hastadan hastaya değişmesinin sebebi bu araştırma ile aydınlatılmış oldu. Buna göre düz kas hücrelerinin Fibromiyozit lere dönüşmesi ve bu dönüşümde TCF21 geninin aktivitesinin önemli olduğu bulundu.

TCF21 geninin koroner arter hastalığı oluşumunda oynadığı kilit rolün keşfi, muhtemelen tedavide yeni ve etkili yöntemler geliştirilmesine yardımcı olacak. Ancak, bu konuda adımlar atılmadan önce, TCF21 geninin bu dönüşüme moleküler düzeyde nasıl aracılık ettiği hakkında bilinmesi gereken daha çok şey var.


Benzer konuda hazırlanmış diğer makaleler 


Mehmet Saltuerk

++++++++++++++++++++++++
Dipl. Biologe Mehmet Saltürk
The Institute for Genetics
of the University of Cologne
++++++++++++++++++++++++

Kaynak

Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis

Bu blogdaki makaleler bir başka yayın organında kaynak gösterilmeden yayınlanamaz, çoğaltılamaz ve kullanılamaz.

Kısa boy ile diyabet 2 riski arasında ilişki var !

Boy uzunluğu genellikle genetik faktörlere göre belirlenir. Bununla birlikte son yıllarda gerek çocuklarda gerekse yetişkinlerde farkedilir derecede boyda bir artış görülmektedir. Yapılan istatiksel çalışmalar boy ortalamasında en büyük artışın Hollanda’da olduğunu gösteriyor. Hollandalı erkekler 150 yıl öncesine göre 20 santimetre daha uzunlar ve ilginçtir ki, Hollanda dünyada kişi başına düşen süt ve süt ürünleri tüketiminde başı çekmektedir.[1][2]

Boydaki bu artış birçok araştırma ekibinin dikkatinden kaçmadı. Bu yüzden bir taraftan bu artışın nedenleri ve tıbbi etkileri analiz edilirken, diğer taraftan da boy ile hastalıklar arasında ilişkiler araştırıldı.

Boy uzunluğu veya kısalığı hastalık riskini etkiliyor mu ?

Yapılan çalışmalardan elde edilen bulgular boy ile Tip 2 diyabet ve Kanser arasında bir ilişki olduğunu gösteriyor. Bu konuda yapılan çalışmalarda elde edilen bu bulgular, uzun boyluların daha fazla kanser, kısa boyluların ise daha fazla Tip 2 diyabet riski taşıdığını gösteriyor.[3]

Aşağıda kısaca özetini okuyacağınız makalede kısa boy ile Tip 2 diyabet arasındaki bağlantının olduğu ve bunun olası sebepleri anlatılmaktadır. (Not: Uzun boy ile kanser riski arasındaki ilişkiye bu makalede değinilmeyecek, ancak bu konuda daha önce hazırlanmış bir makaleye buradan ulaşabilirsiniz. Link

Kısa boy Tip 2 diyabet üzerinde ne kadar etkili

Bu sorunun cevabını bulmak amacıyla Potsdam-Rehbrücke Beslenme Enstitüsü’nden Clemens Wittenbecher ve meslektaşları 2.662 Alman katılımcının verilerini analiz ederek boy ile Tip 2 diyabet arasındaki ilişkiyi yakından incelediler.

Sonuçlar gayet açık

Yaş, yaşam tarzı ve sigara alışkanlığı gibi olası negatif faktörlerin hariç tutulduğu araştırmada sonuçlar tahmin edildiği gibi boy ile Tip 2 diyabet arasında bir ilişki olduğunu gösteriyor. Buna göre boyda her 10 santimetrelik uzunluk erkeklerde ortalama % 41, kadınlarda % 33 oranında Tip 2 diyabet riskinin düşmesine sebep oluyor.

Wittenbecher ve ekibinin araştırmadan elde ettiği başka bir değerli bilgi ise, uzun boyun sağladığı pozitif etki normal kilolu kişilerde daha güçlü, bel çevresi geniş olan kilolu veya obez kişilerde daha zayıf. Daha açık bir ifade ile söylemek gerekirse, eğer fazla kiloluysanız uzun boylu olmanızın avantajı ortadan kalkıyor. (Tabii bu sadece Tip 2 diyabet için)

Sebep karaciğer yağlanması

Peki kısa boy ve Tip 2 diyabet riski arasındaki bağlantının kaynağı ne? Bu sorunun cevabını bulabilmek için katılımcıların karaciğerler-yağ yüzdeleri, belirli hormonların konsantrasyonları ve bir dizi kan değerleri analiz edildi.

Yapılan analizler, kısa boyun Tip 2 diyabete etkisinin indirekt olduğunu gösterdi. Örneğin, yalnızca karaciğer yağlanması erkeklerde boyun her 10 cm için sağladığı % 41 lik avantajı %33‘e, kadınlarda sağladığı %33’lük avantajı %13 düşürüyor.

Önleyici tedbir

Dünyada yaklaşık 300 milyon insanın Tip 2 diyabet hastası olduğu tahmin ediliyor. Genetik yatkınlığın yanı sıra obezite, egzersiz eksikliği ve yanlış yeme içime alışkanlığı hastalığın ortaya çıkmasında rol oynayan önemli risk faktörleridir. Bu faktörlare ilaveten son yıllarda yapılan çalışmalar artık kısa boyluluğun da risk faktörleri arasında yer aldığını gösteriyor.

Her ne kadar laboratuvar analizleri Diyabet 2’nin karaciğer yağlanmasından kaynakladığını işaret etse de, bu yağlanmanın kısa boylularda daha yüksek oranda olması ve boy uzadıkça oranın kademeli olarak düşmesi kısa boy ile Diyabet 2 riski arasında bir bağlantının varlığını indirekt de olsa güçlendiriyor.

Uzun boylularda karaciğer yağlanmasının daha az olması bu kişilerin genel olarak daha sağlıklı bir metabolik profile sahip olduğunu gösteriyor. Her ne kadar kısa boy, Tip 2 diyabet riskinin direkt nedeni olmasa da risk altındakileri tanımlamada ek bir gösterge olabileceği açıktır. Bu yüzden kısa boyluların karaciğer yağlanmasına karşı özel dikkat göstererek kardiyometabolik seviyelerini düzenli kontrol ettirmeleri olası bir Tip 2 diyabet vakasını önleme açısından önem arz etmektedir. [4]

Sonuç

Boyumuzu değiştiremeyiz ama karaciğer yağlanmasına karşı aşırı yağlı yiyeceklerden kaçınarak, düzenli spor yaparak, sigara ve alkolden uzak durarak olası bir Tip 2 riskini azaltabiliriz.


Benzer konuda hazırlanmış diğer makaleler 


Mehmet Saltuerk

++++++++++++++++++++++++
Dipl. Biologe Mehmet Saltürk
The Institute for Genetics
of the University of Cologne
++++++++++++++++++++++++

Kaynaklar

  1. Paradoxes of Modernization and Material Well-Being in the Netherlands during the Nineteenth Century
  2. List of countries by milk consumption per capita
  3. Divergent associations of height with cardiometabolic disease and cancer: epidemiology, pathophysiology, and global implications
  4. Associations of short stature and components of height with incidence of type 2 diabetes: mediating effects of cardiometabolic risk factors

Bu blogdaki makaleler bir başka yayın organında kaynak gösterilmeden yayınlanamaz, çoğaltılamaz ve kullanılamaz.

Otizmin nasıl başladığına dair yeni ipuçları

Otizmle ilgili yapılan çalışmalar, otizmin birçok formunun olduğunu ve bu formların birçok değişik gende meydana gelen mutasyonlardan kaynaklandığını gösteriyor. Bu mutasyonlardan bazılarının hücresel mekanizması aydınlatılmasına rağmen bazılarınki hâla bilinmiyor.

Aşağıda bazı otizm vakalarında rol oynadığı bilinen ama fonksiyonu şimdiye kadar ortaya çıkarılamamış bir mutasyon ile ilgili çalışma bulunmaktadır. UNC Tıp Fakültesi bilim insanları şimdi bu mutasyonun ne anlama geldiğini keşfettiler ve bu keşifle birlikte sadece mutasyonun fonksiyonu değil aynı zamanda beyin gelişimi için çok önemli olan hücresel bir mekanizmanın ayrıntıları da ortaya çıkarıldı.

Hiç kuşkusuz bu ayrıntılar hem mutasyon ile otizm gelişimi arasındaki bağlantının ne anlama geldiğini hem de otizm spektrum bozukluğunun(ADS) biyolojik temelinin anlaşılmasına büyük katkıda bulunacak.

***

Saygın bilim dergisi Neuron‘un 2 Temmuz 2019 tarihli sayısında yayınlanan araştırmada bu mutasyonun otizmli doğan her 59 çocukta 1 görüldüğü belirtiliyor. Makalede ayrıca otizm spektrum bozukluğunun(ADS) oluşumunu sağlayan bu mutasyonun doğumdan çok önce, beyinde Serebral korteksin kendini yeni yeni inşa etmeye başladığı çok erken dönemde meydana geldiği belirtiliyor.

Araştırmanın ayrıntılarını önce Serebral korteks ve Radyal glial hücrelerin ne olduğunu anlatarak başlayalım.

Serebral korteks nedir

İnsanlarda algı, konuşma, uzun süreli hafıza, bilinç ve yüksek beyin fonksiyonlarından sorumlu ve beynin diğer yapılarına kıyasla nispeten büyük ve baskın bir beyin bölgesidir. Serebral korteksin gerek insan gerekse memelilerde beyin gelişimi sırasında kendini nasıl oluşturduğu henüz tam olarak anlaşılamamıştır.

Radyal glial hücrelerin(RGC) beyin gelişimindeki önemi

Radyal glial hücreler veya diğer adıyla Radyal glial progenitör hücreler(RGP), beyin korteksindeki bütün nöronların üretilmesinden sorumlu olan öncü hücrelerdir[1] [2] [3]. Radyal glial hücreler bunun dışında beyinde her yeni oluşan sinir hücresine kılavuzluk yaparak o hücrenin beyinde ulaşması gereken bölgeye ulaşmasını sağlar. Radyal glial hücreler bu işlemi iskele şeklinde yapılar oluşturarak yaparlar ve bu sayede yeni doğan nöronlar, radyal glial hücrelerin oluşturduğu iskelelere tutunarak son hedeflerine ulaşırlar.

Ayrıca Radyal glial hücreler, Serebral korteks gelişiminin erken döneminde tıpkı döşenmiş fayans taşları gibi düzenli aralıklarla korteksin alt tarafında yer alırlar (Bak: yandaki şekil).

Özetle söylemek gerekirse Radyal glial hücrelerin düzenli dizilimi, sağlıklı bir beyin gelişimi için gereklidir. Radyal glial hücrelerin düzensiz dizilimi yeni doğan sinir hücrelerinin beynin yanlış bölgelerine bağlanarak otizm gibi nörolojik hastalıkların ortaya çıkmasına sebep olur.

Farelerle yapılan bir araştırma

UNC Tıp Fakültesi bilim insanları yaptıkları araştırmada otizmli çocukların bazılarının beyninde bulunan Radyal glial hücrelerin düzensiz olduğunu ve bu çocukların yapılan genetik analizinde şaşırtıcı biçimde memo1 geninde mutasyon olduğunu keşfettiler.

Memo1 geninin gerçekten otizmle ilgisinin olup olmadığını araştırmak amacıyla UNC Tıp Fakültesinden Anton ve ekibi farelerde Memo1 geninin faaliyetini genetik bir müdahale ile durdurdular. Genin faaliyetinin durdurulması ile birlikte doğal olarak genin kodladığı Memo1 proteini üretimi de durdu. Daha sonra farelerin beyninde yapılan patolojik araştırmada öncü Radyal glial hücrelerin (RGC) oluşturduğu iskeleinin yapısının çok fazla dal oluşturarak bozuduğu tespit edildi.

Bu ne anlama geliyor?: İskelenin yanlış olması, yeni oluşan sinir hücrelerinin yanlış yol takip ederek beynin yanlış bölgesine yönelmesine ve orada yanlış bağlantılar kurmasına sebep oluyor. Bu, tıpkı yanlış döşenmiş raylarda giden trenin yanlış istasyona gitmesi gibi bir şey…

Memo1 proteini ne yapıyor?: Memo1 proteini, öncü Radyal glial hücrelerin yapmış olduğu kılavuz iskeleyi kararlı tutuyor. Başka bir ifadeyle, eğer Memo1 proteini ortamda yoksa iskele yanlış kurularak yeni doğan sinir hücrelerinin beyinde yanlış bölgelerde yanlış bağlantılar kurarak otistik semptomların ortaya çıkmasına sebep oluyor.

Sonuç

Fareler ile yapılan bu araştırmadan sonra daha geniş otizmli çocuk grubu ile bir araştırma daha yapıldı. Yapılan bu ileri araştırmada, çocukların memo1 geninde mutasyon olup olmadığı tekrar araştırıldı.

Araştırmanın bu ikinci aşamasında otizmin değişik formlarına sahip çocukların bazılarının memo1 geninde hiçbir mutasyon olmamasına rağmen yine de düzensiz Radyal glial hücrelerin(RGC) var olduğu görüldü. Bu da otizmin ortaya çıkmasında birçok gende meydana gelen değişik mutasyonların sebep olduğu teorisini güçlendiriyordu…

Muhtemelen memo1 genin dışında başka genler de düzensiz Radyal glial hücrelerin(RGC) oluşmasına sebep oluyor. (Not: Otizme sebep olan kaç mutasyonun olduğu hâla olarak tam bilinmiyor)

Son söz: Her ne kadar bugünkü teknoloji ile hamilelik esnasında bebeğin beyninde meydana gelen gelişimsel bozulmaları düzeltmek şimdilik pek mümkün olmasa da bu keşif sorunun kökenini anlamamız açısından oldukça önemli. Eğer yeni teşhis ve tedavi stratejileri geliştirmek istiyorsak, sorunun kökenini, gelişimini anlamaya ihtiyacımız var.

Otizm hakkında hazırlanmış diğer makaleler

Mehmet Saltuerk

++++++++++++++++++++++++
Dipl. Biologe Mehmet Saltürk
The Institute for Genetics
of the University of Cologne
++++++++++++++++++++++++

Kaynaklar

  1. Mechanisms of radial glia progenitor cell lineage progression
  2. Evolution of the neocortex: a perspective from developmental biology
  3. Neurons derived from radial glial cells establish radial units in neocortex
  4. Memo1-Mediated Tiling of Radial Glial Cells Facilitates Cerebral Cortical Development

Bu blogdaki makaleler bir başka yayın organında kaynak gösterilmeden yayınlanamaz, çoğaltılamaz ve kullanılamaz.

İleri yaşta baba olanların çocukları daha uzun yaşayabilir !!!

Hepimiz uzun ve sağlık bir yaşam isteriz. Spor yaparak, dengeli beslenerek, sigara ve alkolden uzak durarak ve modern tıbbın imkânlarından yararlanarak bu isteğimizi bir miktar gerçekleştirmek mümkün olsa da, bunlara dikkat ederek ne kadar uzun yaşayacağımızı kestirmek pek mümkün değil.

Uzun telomer, uzun bir yaşam demek

Günümüzde telomer uzunluğu ile yaşlanma belirtileri arasında gözle görülebilir ilişkinin olduğu bilinmektedir. Bu konuda birçok bilimsel çalışma ve bu çalışmaların yayınlandığı birçok bilimsel makale bulunmaktadır. (1) (2)

Doğumla bize aktarılan Telomerlerimizin uzunluğu ne kadar uzun yaşayacağımız konusunda bize oldukça açık bir bilgi veriyor. Bu bağlamda Telomer uzunluğu, kronolojik yaşın aksine gerçek biyolojik yaşın bir ölçüsüdür. Yani Telomerler için “Hücrelerin yaş saati” demek yanlış olamz.

***

Aşağıda, ileri yaşta baba olanların çocuklarının telomer uzunluğu üzerinde pozitif etkisi olduğunu anlatan bir araştırma yer almaktadır. Araştırmanın bilim dışındaki okuyucular tarafından da anlamaşılması için telomerler hakkında bazı temel bilgileri vermemiz gerekiyor.

Telomer nedir, uzun telomer ile uzun ömür arasında nasıl bir ilişki vardır

Telomerler, kromozomların uç kısımlarında bulunan ve kromozomları koruyan yapılardır. Telomerler, 900 ila 2,000 tekrara sahip „TTAGGG“ baz dizilimin’den oluşur (3).

Yaşamımız boyunca programlanmış her hücre bölünmesinde telomerlerimiz 25-200 baz çifti kısalır. Bir noktadan sonra telomerler o kadar kısalır ki, hücre bölünmesi artık durur. Daha açık bir ifade ile telomerler, çalışan bir kum saati gibi çalışır ve hücrelerin 50 ila 60 kattan fazla bölünmesini önler. (Bu kısalma süreci hücrenin kendi programı dahilinde olur ve yaşlılığın bir ölçüsüdür.)

Not: Burada konumuz değil ama yinede birkaç cümle ile belirtmeden geçmeyelim: Bazı kanser türleri telomerlerin uzamasını sağlayan Telomeraz enzimini aktive ederek durmuş olan hücre bölünmesini kontrolsüz olarak yeniden başlatır. Bu süreç kanser gelişiminde önemli bir rol oynar). (4) (5)

Telomer uzunluğu cinsiyetler arasında farklık gösteriyor: Telomerlerin, kadınlarda erkeklerden daha uzun olduğu ve bu nedenle kadınların erkeklerden daha uzun yaşadığı bilinmektedir. Ayrıca yaşlı ikizler ile yapılan çalışmalar kısa telomerlere sahip olan ikizlerin daha önce öldüğünü gösteriyor.

Yaşlandıkça telomerler kısalıyor: Vücut hücreleri zamana bağlı olarak bölünür ve her bölünmede kromozomların uç kısmında yer alan ve koruyucu özelliğe sahip telomerler bir miktar kısalır. Birçok hücre bölünmesinden sonra telomerler belirli bir uzunluğun altına düşerler ve artık hücre bölünemez. Bu süreç sonunda hücreler büyümez veya tamamen ölürler. Aslında bu durum yaşlanmada önemli derecede sorumlu olan bir süreçtir. Başka bir ifade ile her bölünmede kısalan telomerler yaşlanmanın bir belirtisidir.

Telomer kısalmasını belirleyen tek faktör ilerleyen yaş değildir. İlerleyen yaştan bağımsız olarak telomer kısalmasını neden olan diğer faltörler de vardır.

Telomer uzunluğunu etkileyen diğer faktörler:

  1. Sigara
  2. Hava kirliliği
  3. Oksidatif stres
  4. Düşük antioksidan alımı
  5. İltihaplar
  6. Hareketsiz bir yaşam
  7. Fazla kilolar
  8. Diyabet
  9. Stres
  10. D vitamini eksikliği

İleri yaşta baba olanların çocukları daha uzun telomerlere sahipler

Uzun telomerler, uzun bir yaşam için önemli bir ön koşuldur. Bu konuda yapılan birçok araştırma ileri yaşta baba olanların çocuklarında da uzun telomerler bulunduğunu gösteriyor. Yapılan ileri araştırmalar uzun telomerlerin sadece ileri yaşta baba olanların çocuklarında değil, onlardan doğan çocuklarda da görüldüğünü gösteriyor. Ama hemen belirtelim, bu olumlu etkinin çocuklarda ve torunlarda sağlık ve yaşam kalitesi konusunda ne anlama geldiği şimdilik belli değil.

Sperm hücrelerinde durum farklı

İnsan hücreleri kendini kopyalayarak yenilerler ve her kopyalamada telomerler bir miktar kısalır. „TTAGGG“ dizilimi yılda yaklaşık olarak 25-200 baz çifti kısalır. İnsanların yıllar geçtikçe yaşlanmasının sebebi „TTAGGG”dizisinin gittikçe azalmasının bir sonucudur (6). Ancak bunun bir istisnası var, o da sperm hücresi telomerlerinin yaşla birlikte uzuyor olması.

Vücut hücrelerinin aksine spermlerdeki telomerlerin neden uzadığı tam olarak bilinmese de muhtemelen telomerlerin uzamasından sorumlu olan telomeraz enziminin spermlerde ilerleyen yaşla birlikte aktivitesinin artmasından kaynaklandığı düşünülüyor.

Filipinli aileler ile yapılan araştırma hakkında kısa bilgi:

Washington Üniversitesindeki bilim insanları birkaç yıl önce Filipinli aileler ile yaptığı bir çalışmada, bir kişinin telomer uzunluğunun, o kişinin annesinin kendisine hamile kaldığı sırada babasının yaşıyla anlamlı şekilde ilişkili olduğu belirlendi. Buna göre ileri yaşta baba olanların çocuklarının telomerleri daha uzun oluyor.

Pozitif etki iki kuşaktan daha ileriye gidiyor

Aynı ekip Pasifik eyaletlerinde daha önce elde edilen bu sonuçları yeniden incelemek ve daha ileriye götürmek amacıyla dört nesli kapsayan toplam 3.282 kişi ile yeni bir araştırma daha yaptılar.

İkinci araştırmada katılımcıların aile geçmişi ile telomer uzunluğu arasındaki bağlantı incelendi.(7)

Sonuç

  • Bu olumlu etkinin sadece doğan kız ve erkek çocuklarda olmadığı aksine bunlardan doğan çocuklarda da görüldüğü tespit edildi. Başka bir ifade ile ileri yaşta baba olanlar sadece kendi çocuklarına değil aynı zamanda kız ve erkek torunlarına da uzun telomer vermiş oluyor (Önceki yapılan çalışmaların yetersiz olması nedeniyle bu bağlantının sadece erkek çocuklardan doğan torunlara aktarıldığı sanılıyordu).
  • Bu araştırma ile anne yaşının telomer uzunluğu üzerinde etkili olmadığı, ayrıca yaşam koşulları ve çevresel birçok faktörün telomer uzunluğu ile baba yaşı arasındaki ilişkiyi etkilemediği görüldü.
  • Araştırmacılar bu etkinin daha uzun nesiller boyunca hissedileceğini iddia ediyorlar. Her ne kadar “Bunu araştırmalarla açıkça kanıtlayamadık” deseler de bunun muhtemelen eldeki istatistiksel verilerin yetersiz olmasından kaynaklandığı söylenebilir.
  • Babanın yaşından kaynaklanan bu olumlu etkiye bakarak “Sağlık ve Yaşam Kalitesi Beklentisi” konusunda olumlu veya olumsuz bir şey söylemek şimdilik erken. Ama bu konuda bilinen ve kesin olan bir şey var ki, o da uzun telomerlere sahip hücrelerin, rejenerasyon yani yenileme potansiyelinin yüksek olması…

Açıklama: Her ne kadar ileri yaşta baba olanlar, uzun ve sağlıklı bir yaşam için önemli bir ön koşul olan uzun telomerleri genetik miras yolu ile çocuklarına ve torunlarına aktarıyorlar olsalar da, bu çocukların daha sık otizm, şizofreni psikolojik hastalıklardan muzdarip olduğu bilinmektedir. Ayrıca bu konuda yapılan araştırmalar yaşlı babaların çocuklarına daha fazla genetik mutasyon aktardığını gösteriyor. Bu sayı 20 yaşında 25 iken, 40 yaşında 65 mutasyondur.(8)


Benzer konuda hazırlanmış diğer makaleler 


Mehmet Saltuerk

++++++++++++++++++++++++
Dipl. Biologe Mehmet Saltürk
The Institute for Genetics
of the University of Cologne
++++++++++++++++++++++++

Kaynaklar

  1. Consequences of telomere shortening during lifespan
  2. Telomere length in early life predicts lifespan
  3. Conservation of the human telomere sequence (TTAGGG)n among vertebrates
  4. PML induces compaction, TRF2 depletion and DNA damage signaling at telomeres and promotes their alternative lengthening
  5. Telomeres: Implications for Cancer Development
  6. Genetic determination of telomere size in humans: a twin study of three age groups.
  7. Older paternal ages and grandpaternal ages at conception predict longer telomeres in human descendants
  8. Rate of de novo mutations and the importance of father’s age to disease risk

Bu blogdaki makaleler bir başka yayın organında kaynak gösterilmeden yayınlanamaz, çoğaltılamaz ve kullanılamaz.

Genetik hastalıklar: Huntington

Huntington(HD) veya Chorea Huntington hastalığı çok nadir görülmesine rağmen çok ciddi ve günümüzde henüz tedavisi olmayan kalıtsal bir beyin hastalığıdır.

Hastalığa 4. Kromozomda bulunan HTT adındaki gende meydana gelen bir mutasyon sebep olur. Hastalığın ilk belirtileri genellikle 35 ila 45 yaşları arasında başlar, ancak erken çocukluk döneminde veya sadece yaşlılıkta da ortaya çıkan formları da vardır. Bu farklılık, hastalığa neden olan mutasyonun genomun neresinde bulunduğuna ve tekrar eden sekansın uzunluğuna bağlı olarak değişir.

Gevşek kas tonusu, koordine edilemeyen istemsiz hareketler, kol–bacak–gövde ve yüz kaslarında ani ve istemsiz kasılmalar hastalığın tipik belirtileridir.

Hastalığın etkilerini engelleme yönünde yapılan müdahalelerin etkileri sınırlıdır. Sinir hücrelerini korumak ve ileride oluşabilecek nöronal dejenerasyonu durdurabilmek için çok sayıda madde test edilmesine rağmen şu ana kadar bu maddelerin hiçbiri hastalığın seyri üzerinde önemli bir etkiye sahip olamadı. Bununla birlikte, Huntington hastalığının semptomlarını azaltmaya yardımcı olabilecek bazı ilaçlar bulunmakdır.

Teşhis

Hastalık genetik bir test ile ortaya çıkartılır. Hasta ve yakınları için genetik testin sonuçlarını beklemek endişe verici ve zor bir dönemdir. Test sonuçları çoğu zaman siya-beyaz şeklinde kesin olmakla beraber küçük bir azınlık Gri Alanda(Azaltılmış penetrasyon) yer alır. Bu tür sonuçların ne anlama geldiğini hem anlamak, hem de hastaya anlatmak oldukça zordur.

Bu yazımızda hem hastalık hakkında genel bir bilgi, hem de gri alanda yer alan bazı durumlara açıklık getirilmeye çalışılacaktır. Makalenin sonunda ise geliştirilmekte olan ve oldukça umut vaad eden etkili bir ilâçlı tedaviden bahsedilecektir.

Hastalığın genetik özelliği

Genler, DNA denilen genetik materyalden oluşur. DNA, tüm yaşamın şifresidir ve bu şifre A, C, G ve T olmak üzere dört harften oluşur. Bu harflerin bilimsel adı Nükleotit dir.

4. Kromozomda HTT, ya da diğer adı HK olan bir gen bulunur. Bu genin her insanda bir anneden bir de babadan olmak üzere iki kopyası bulunur.

HTT geni Huntington adında bir protein kodlar ve HTT geninde meydana gelen bir mutasyon bu proteinin hatalı kodlanmasına ve buna bağlı olarakta Huntington hastalığının ortaya çıkmasına sebep olur. Mutasyon, genin başlangıç kısmına yakın bir bölgesinde „CAG, CAG, CAG, CAG, CAG, CAG, CAG….CAG“ şeklinde arka arkaya defalarca tekrarlanan bir nükleotit dizilimi şeklindedir.

HTT genindeki CAG tekrar sayısı kişiden kişiye değişebilmekte ve bu sayı bazılarında 15, bazılarında ise 120’ye kadar çıkabilmektedir. Sağlıklı bir insanda ortalama tekrar sayısı yaklaşık 17’dir. Sağlığımız ve ömrümüz bu “CAG” diziliminin tekrar sayısına bağlı olarak değişmektedir.

Huntington, dominant bir hastalıktır. Bu şu anlama geliyor: HTT geninin iki kopyasından birisinde yüksek sayıda CAG bulunması durumunda hasta olmak kaçınılmazdır.

Güvenli sayı nedir

Eğer HTT geninin her iki kopyasındaki CAG sayısı 26 veya daha az tekrara sahipse o kişi ve çocukları sağlıklı sayılır. HTT geninin bir kopyası 40 veya daha fazla sayıda CAG dizilimine sahip ise bu, o kişilerin yaşamlarının bir noktasında Huntington hastalığı ile yüz yüze gelecekleri anlamına gelmektedir. Ayrıca bu durumda bunların çocukları da % 50′ oranında risk altındadır.

Gri alan

CAG tekrarlarının sayısı 27 ile 39 arasında olması genellikle Gri alan olarak tanımlanır ve gri alanda bulunanların test sonuçlarını tanımlamak hem oldukça karmaşık, hem de bunu hastaya anlatmak bir hayli zordur. Örneğin; 36 ila 39 CAG tekrar sayısına sahip kişilerin bazılarında hastalık belirtileri ortaya çıkarken bazılarında çıkmamaktadır. Bu yüzden bu aralıkta bulunan kişiler için hastalığın geleceği konusunda bir öngörüde bulunmak zordur ama eğer semptomlar yaşamın herhangi bir döneminde belirmeye başladıysa, daha sonraki bir dönemde hastalık başlar, ama şiddeti azdır. Bu forma sahip bireylerin çocukları ise yaklaşık % 50 oranında risk altındadır.

Başka bir gri alan da 27 ile 35 tekrara sahip olanlardadır. Bu tekrara sahip kişilerin HTT geninin bir kopyası sağlıklı ise bu kişilerde Huntington görülmez ancak çocukları % 50 risk altındadır.

Gelecek nesillerde durum

HTT geninde mutasyon bulunan bireyin çocukları ve torunlarında CAG tekrar sayısı kararsız duruma geçebilmektedir. Yani yeni nesillerde CAG tekrar sayısı artabileceği gibi azalabilmektedir de… HTT genindeki bu dengesizlik doğal olarak gelecek nesiller hakkında bir tahmin yürütmeyi dezorlaştırıyor. HTT geninin neden dengesiz olduğu tam olarak bilinmese de sorunun DNA’nın kopyalanması esnasında oluşan hatalardan kaynaklandığı tahmin ediliyor.

Aile öyküsü önemli mi?

Huntington hastalığına yakalananların yaklaşık %10’nunda aile öyküsünün olmadığı görülse de, bu istatiksel bilgilerin güvenilir olduğunu söylemek pek doğru sayılmaz, Bu yüzden aile öyküsünün olmaması diğer aile bireylerinde ve bunların doğacak çocuklarda hastalığın görülmeyeceği anlamına gelmiyor.

İstatistikleri yanıltan birkaç sebep var

  • Özellikle geçmiş yıllarda güvenilir bir genetik test olmadığı için hastalığa Huntington yerine Parkinson veya başka bir nörodejeneratif hastalık teşhisi konulması (Hatta bu hatanın günümüz de bile yapılması mümkün.)
  • İstatiksel verileri yanıltan başka bir konu da potansiyel olarak Huntington riski taşıyan bireyin ilk belirtiler ortaya çıkmadan başka bir hastalıktan ölmesi.
  • Yine istatistikleri yanıltan bir başka konu daha var o da genetik mutasyonun durumu ile ilgili. Mesela orta uzunlukta CAG tekrar sayısına sahip bir bireyin kendisi hasta olmasa da çocuklarında bu risk her zaman var. Yapılan genetik çalışmalar çocuklarında Huntington görülen ebevyenlerde genellikle orta uzunlukta, yani 27 ile 35 CAG tekrar sayısına sahip olduğunu gösteriyor.

Özet

Dördüncü kromozomun kısa kolunda bulunan HTT genide CAG şeklinde bir üçlü dizilim var. CAG, üç nükleotitin kısa yazılmış halidir. Buna göre CAG, 1 adet Cytosin(C), 1 adet Adenin (A), 1 adet Guanin(G) den oluşmaktadır. Huntington hastalığı bu dizilimin ard arda tekrar sayısı ile ilintilidir. Başka bir ifade ile bu sayı sağlıklı kişilerde az, Huntington hastalarında fazladır.

CAG sayısı dört kategoriye değerlendirilmektedir.

  1. 25 ve daha az tekrar sayısına sahip olanlarda hastalık oluşmaz. Bu aralık normal kabul ediliyor.
  2. 26-36 arası Gri alandır. Bu aralıkta bulunanlar büyük bir olasılıkla Huntington hastalığına yakalanmayacaklar ancak bu kişilerin yumurta veya sperm hücreleri daha yüksek sayıda CAG sahip olabilir. Bu da gelecek nesilde yeni mutasyonların oluşmasına sebep olabilmektedir. Bu nedenle bu kişilerin çocukları için bir risk olduğunu söylemek yanlış olamaz.
  3. 36-39 tekrar sayısına sahip olanların bazılarında hastalık belirtileri görülürken, bazılarında görülmez. Bu gruptakilerde eğer hastalık günün birinde ortaya çıkacaksa, bu oldukça geç yaşta ve hafif ilerlerleyen bir formda ortaya çıkacaktır. Bu nedenle bu gruptakilerde çoğu vaka teşhis edilemez.
  4. 40 tekrar sayısı pozitiftir. Yani hastalık yaşamın bir döneminde mutlaka ortaya çıkar.

40 tekrar ve üzerindekilerde  ölüm yaşı

  • 40 tekrarda ortalama ölüm yaşı 59 dur.
  • 41 tekrarda ölüm yaşı 54,
  • 42 tekrarda ölüm yaşı 37,
  • 50 tekrarda ölüm yaşı 27,

Bu değerler her ne kadar CAG sayısı ile hastalığın başlangıcı ve hastalığın seyri ve ölüm yaşı konusunda bir şey söylese de bu genel bir tanımdır. Bireysel durum kimi zaman farklı olabilmekedir. Bazen aynı CAG değerine sahip iki bireyde hastalığın ortaya çıkma yaşı farlı olabilmektedir. Hatta hasta olan ikizlerde bile hastalığın ortaya çıkma yaşı farklı farklı olabilmektedir.

Özellikle 50’nin altındaki CAG değerleri için hastalığın ortaya çıkma yaşı kişiden kişiye on yıl varan farklılıklar gösterebilmektedir. Ayrıca mutasyona ek olarak, diğer genlerin ve çevresel faktörlerin de rol oynadığı tahmin ediliyor.

Tedavide umut

Yukarıda belirtildiği gibi CAG sayısında meydana gelen anormal artışın Huntington proteininde artışa, bu da sinirler üzerinde patojen etki yaparak hastalığın ortaya çıkmasına sebep oluyor. Aslında başka genler üzerinde benzer sebepler kaynaklanan başka genetikler hastalıklar da var. Bu tür hastalıkların tedavisinde değişik stratejiler uygulanıyor. Bu uygulamalardan biri klasik bir yöntem. Bu tedavi yöneminde genlerin ürünü olan proteinler hedef alınıyor. Buna göre eğer hastalık eksik proteinden kaynaklanıyorsa, protein ilavesi, fazla proteinden kaynaklanıyorsa, fazla proteini bloke etme şeklinde oluyor.

Yeni yöntem: Hedefe kilitlenen Anti-sens ilaçlar

Bilimsel adı Antisense-Oligonukleotide olan Antisens ilaçlar, hastalığa neden olan mutasyona uygun “anti sekanslar” şekilde hazırlanıyor. Huntington hastalığı için geliştirilen Antisens ilaçlar fazla olan CAG dizilimini bloke ederek hastalığı tedavi ediyor. Yani karşıt dizilim fazla olan CAG dizilimine yapışarak gereksiz protein üretimini durduruyor.

Klinik çalışmalar devam ediyor

Yukarıda daha kolay anlaşılması için çok fazla ayrıntıya girilmeden anlatılmaya çalışılan ilaçlar üzerinde birçok firma çalışma yapıyor. Klinik öncesi aşamada olan bu ilaçların patenti büyük ilaç firmaları tarafından çoktan alındı. Antisens ilaçların klinik öncesi yapılan çalışmalarının başarılı olduğunu belirtiliyor. (Link1, link2, link3)


Benzer konuda hazırlanmış diğer makaleler 


Mehmet Saltuerk

++++++++++++++++++++++++
Dipl. Biologe Mehmet Saltürk
The Institute for Genetics
of the University of Cologne
++++++++++++++++++++++++

Kaynaklar

  1. Late onset of Huntington’s disease
  2. Length of Uninterrupted CAG, Independent of Polyglutamine Size, Results in Increased
  3. Rationally designed small molecules targeting toxic CAG repeat RNA that causes Huntington’s disease (HD) and spinocerebellar ataxia (SCAs)
  4. Unbiased Profiling of Isogenic Huntington Disease hPSC-Derived CNS and Peripheral Cells Reveals Strong Cell-Type Specificity of CAG Length Effects.
  5. Somatic mosaicism in sperm is associated with intergenerational (CAG)n changes in Huntington’s disease.
  6. Mortality rate of Huntington disease in Japan: Secular trends, marital status, and geographical variations
  7. The prevalence of Huntington’s chorea in South Africa..
  8. Huntington’s disease in black kindreds in South Carolina.
  9. DNA haplotype analyses of Huntington disease reveals clues to the origins and mechanisms of CAG expansion and reasons for geographic variations of prevalence.
  10. Ancestral differences in the distribution of the D2642 glutamic acid polymorphism is associated with varying CAG repeat lengths on normal chromosomes: insights into the genetic evolution of Huntington disease.
  11. Reproductive options for prospective parents in families with Huntington’s disease: clinical, psychological and ethical reflections
  12. IONIS-HTTRx Shows Promising Results in Phase 1/2 Clinical Trial

Bu blogdaki makaleler bir başka yayın organında kaynak gösterilmeden yayınlanamaz, çoğaltılamaz ve kullanılamaz.

Hafta sonu uzun uyumak faydadan çok zarar veriyor

Hayatımızın neredeyse üçte birini kapsayan uyku hayati derecede önemli fizyolojik bir ihtiyaçtır. Dinlendirici bir uykunun süresi kişiden kişiye değişmekle beraber yaşa bağlı olarak da farklılıklar göstermektedir. Yeni doğmuş bebekler 16-18 saat, küçük çocuklar 12-14 saat, yetişkinler ise ortalama 7-9 saat arası uykuya ihtiyaç duyarlar.

Uyku ihtiyacımızın ana nedeni beynimizdir. Beynimize gün boyunca sürekli bilgiler gelir ve işlenir. Yaklaşık 16 saat sonra beynimiz neredeyse çalışma kapasitesinin tamamını kullanmış olur.

Beynimizdeki sinir hücrelerinin tekrar verimli olarak çalışabilmesi için istirahata, yani uykuya ihtiyacı vardır. Uykunun dinlendirici olabilmesi için her şeyden önce uyku süresinin yeterli olması gerekmektedir.

Uyku nedir: Uykunun gizemi henüz tam olarak çözülmediği için bu sorunun cevabını tam olarak bilemiyoruz. Ama elimizdeki bilgiler ışığında bugün uykunun saf bir dinlenme evresi olmadığını, bilgilerin depolanmasında, enerji tasarrufuna, biyolojik çöplerin hücreden atılmasından, bağışıklık sistemimizin güçlenmesi ve yaraların iyileşmesine kadar birçok metabolik olayın uykuda gerçekleştiğini artık biliyoruz.

Aşağıda, hafta içi az uyumadan kaynaklanan uyku açığının hafta sonu uzun uyuyarak telafi etmenin mümkün olup olmadığını ele alan bir araştırma yer almaktadır. Bu ilginç araştırma saygın bilim dergisi Current Biology nin 28 şubat 2019 tarihli sayısında yayınlanmıştır. Araştırmanın ayrıntılarına girmeden önce uyku ve uykuyu düzenleyen Biyolojik saat ile ilgili bazı ilginç bilgilere değinmeden geçmeyelim.

Uyku neden çok önemli, uykuda neler oluyor 

Uyku esnasında birçok biyolojik olay gerçekleşmektedir. Bunların bazıları şunlardır:

  • Hafıza ve uyku: Bellek ile ilgili işlemler çoğunlukla uyku sırasında gerçekleşir. Gün içerisinde beynimize kaydedilen izlenimler, deneyimler ve bilgiler geçici olarak beynin hipokampüs bölgesinde depolanır. Ve depolanan bu bilgiler sadece geceleri uykuda yeniden etkinleştirilir. Yeniden etkinleştirme işlemi bilgilerin kalıcı olması için gereklidir. Çünkü uyku, hipokampusta geçici olarak depolanan bu bilgileri serebral korteksin bir parçası olan neocortex‘e aktarılmasını teşvik eder. Neocortex aktarılan bilgiler burda içeriğine göre sıralanarak uzun süreli bellek oluşturulur. İşte bu bilgi aktarımı sadece uyku sırasında gerçekleşir, aksi takdirde beyin toplanan bilgiler ile hipokampustan neokortekse aktarılan bilgiler arasında ayrım yapamaz.(1)(2)(3)(4)
  • Bağışıklık sistemi ve uyku: Uyku, vücuda zihinsel ve fiziksel iyileşme fırsatı sunar. Organlar ve bağışıklık sistemi yenilenir ve özellikle de yaraların iyileşmesi uykuda gerçekleşir.(5)(6)
  • Enerji tasarrufu ve uyku: Vücut ısısı uyku sırasında bir derece kadar düştüğü için vücudumuz gece uyku esnasında enerji tasarrufu sağlar.
  • Gençlik, çekicilik ve uyku: Araştırmalar, dinlenmiş insanların daha çekici ve sağlıklı olduğunu gösteriyor. Uzun süre çok az uyku ile yetinmek, yaşlılık semptomları olarak kabul edilen kanda kortizol miktarının artması, glukoz toleransının kötüleşmesine sebep oluyor.(7)
  • Toksik maddelerin atımı ve uyku: Uyku, hücrelere detoksifikasyon yapma imkanı verir. Vücut, biriken ve ihtiyaç duyulmayan metabolik son ürünleri özellikle geceleri atar. Gündüz metabolik faaliyetler sonucu beyindeki Glia Hücrelerde moleküler çöp olarak adlandırılan atık maddeler birikir. Günün ilerleyen saatlerinde bu atık maddelerin miktarı gittikçe artarak yorgunluğun ortaya çıkmasına sebep olur. Gece uyku esnasında Glia hücreler hacimlerini % 60 oranında küçülterek moleküler çöplerin beyinden dışarıya atılmasını sağlanır. Beyin yıkanması olarak adlandırılan bu sürecin sonunda sabahleyin yataktan dinlenmiş olarak kalkarız. (Daha fazla ayrıntı için tıklayın)

Biyolojik Saat

Biyolojik saat, gece/gündüz gibi ritmik olarak değişen çevre koşullarına uyum sağlamak için vücudun metabolik olayları 24 saat boyunca senkronize etme kabiliyetidir. Biyolojik saat, hücresel düzeyde sayısız kimyasal reaksiyonu senkronize eder. Ne zaman yatıp uyuyacağımız, ne zaman uyanacağımız Biyolojik saat tarafından belirlenir.

Vücudun her hücresinde sürekli olarak birbirleriyle etkileşim içinde olan milyarlarca Biyolojik saat vardır ve bu milyarlarca Biyolojik saat beyinde bezelye büyüklüğünde Suprachiasmatic çekirdek (SCN) tarafından yönetilir. İnsanda ve birçok türde en önemli biyolojik saat gece ve gündüz ışık ritmine bağlı olarak gelişen uyku-uyanma ritmidir.

Biyolojik ritimlerin süreleri bir günden uzun olabileceği gibi (infradian ritim), bir günden çok kısa da olabilmektedir (ultradian ritim). Günlük, aylık, yıllık, mevsimsel ritimlere göre değişen Biyolojik saatler vardır. Vücutta değişik biyolojik ritimleri ayarlayan yüzlerce gen görev almaktadır. Bu konuda fareler yapılan bir araştırma, protein kodlayan tüm genlerin % 43’nün Biyolojik saat tarafından regüle edildiğini gösteriyor.(8)

Biyolojik saat döngüsündeki bozukluklar her şeyden önce yorgunluk, halsizlik ve enfeksiyonlara yatkınlık şeklinde kendini gösterir. Biyolojik saat döngüsündeki uzun süreli bozukluklar depresyon ve psikozun ortaya çıkmasına sebep olabilir.

Not: Biyolojik saat konusu biyolojide başlı başına ayrı ve geniş bir alandır. Bu konu, Kronobiyoloji adında bir bilim dalı tarafından incelenmektedir.

***

Hafta sonu uzun uyumak faydadan çok zarar veriyor

Hafta sonu uzun uyumak metabolizmayı daha karmaşık hale getiriyor: Birçok kişi yoğun iş temposu nedeniyle hafta içi sabahları erken kalkarak uykusundan feragat etmek zorunda kalır. Eğer bu durum uzun süre devam ederse kişide Kronik uyku açığının ortaya çıkmasına sebep olur. Kronik uyku açığının en belirgin özelliği kişinin kendini gün içerisinde yorgun ve tükenmiş hissetmesidir. Kronik uyku açığının uzun yıllar devam etmesi halinde ise birçok metabolik rahatsızlığın ortaya çıkması da kaçınılmaz olur.

Hafta sonu uzun uyumak uyku açığını kapatır mı? 

Yapılan araştırmalar birçok insanın hafta içinde günlük yedi saat uyumadığını, bu süreye ancak hafta sonları ulaşabildiğini gösteriyor. Hafta içi yoğun iş temposu nedeniyle çok az uyuyup hafta sonu uzun uyuyarak bu açığı telafi etmek mümkün mü?

Hafta içi az uykunun sebep olduğu zararlı etkileri hafta sonları uzun uyuyarak telafi etmenin mümkün olup olmadığını araştırmak amacıyla Colorado Üniversitesi’nden Christopher Depner ve meslektaşları 36 genç ve sağlıklı denek ile uyku laboratuvarında iki hafta süren bir araştırma yaptılar. Çıkan sonuçlar, kronik uyku açığının sebep olduğu zararlı etkilerden hafta sonu uzun uyuyarak kurtulmanın mümkün olmadığını gösteriyor.

Araştırma nasıl yapıldı

Araştırmaya katılan denekler ortama alışmaları için önce makül bir süre laboratuvarda bekletildiler ve ardından iki haftalık bir araştırma için üç gruba ayrıldılar.

  1. Grup(kontrol grubu): Günde dokuz saat uykudular
  2. Grup: Günde sadece beş saat uykudular
  3. Grup: Pazartesiden cumaya kadar günde beş saat, hafta sonu uzun uyudular. İkinci hafta pazartesiden cumaya kadar yine sadece beş saat uyku uyudular.

Her üç grupta bulunan deneklerin gerek araştırmaya başlamadan önce, gerekse araştırma bittikten sonra vücut ağırlıkları, kalori alımı ve harcamaları ile çeşitli dokulardaki insülin duyarlılığı ve uyku hormonu Melatonin seviyeleri ölçüldü.

Sonuçlar şaşırtıcı 

  • Hafta sonu uzun uyuyanlar kilo aldılar
  1. Üçüncü gruptaki deneklerin hafta içinde ortalama olarak on iki saatten fazla birikmiş uyku açığı olmasına rağmen, hafta sonu sadece 1,1 saat daha uzun uyudular ve uyku açıklarını ikinci haftaya taşıdılar.
  2. Hafta sonu uzun uyuyan üçüncü gruptakiler ile her gün kısa uyuyan ikinci gruptakilerin metabolizmalarında aynı olumsuz değişiklikleri görüldü. Her iki grubun bireyleri deney süresince yaklaşık olarak 1,3 ile1,4 kg arası şişmanladılar. Buna deneklerin normal akşam yemeği dışında uyuyana kadar atıştırmalık yiyecekler yiyerek gereğinden fazla kalori almasının sebep olabileceği tahmin ediliyor.
  3. Bunun dışında bu iki gruptaki bireylerin uyku hormonu Melatonin maksimum seviyenin de geriye kaydığı tespit edildi.(Buna Biyolojik Saatin geriye kaymasının sebep olduğu düşünülüyor.)
  • Hafta sonu uzun uyuyanlarda şeker metabolizması bozuldu
  1. Başka bir şaşırtıcı etki de şeker metabolizması üzerinde görüldü. Hafta içi kısa uyuyanlarda yani ikinci gruptakilerin kasları ve diğer dokularında insülin duyarlılığının ortalama yüzde 13 oranında azaldığı tespit edildi.
  2. Üçüncü gruptakilerin yani hafta içi kısa uyuyan ama hafta sonu uzun uyuyanlarda ise durum biraz daha kötü. Bu grupta insülin duyarlılığının yüzde 27’ye kadar düştüğü görüldü. Bu şaşırtıcı sonuç gerçekten hiç beklenmiyordu. Zira hafta sonu uzun uyumanın metabolizmaya olumlu etkisi olacağı tahmin ediliyordu.

Araştırmacılar, bu şaşırtıcı durumun normal ritimdeki değişikliklerden kaynaklandığını, değişen uyku süresinin vücudu az uyumadan daha fazla strese sokarak metabolizmayı bozduğunu düşünüyorlar.

Sadece düzenli uyku 

Kronik uyku açığının verebileceği olası yıkıcı etkilerden korunmak için gece uykusunun yeterli olması gerekmektedir. Bu araştırma düzenli olarak en az yedi saat uyumak gerektiğini, hafta boyunca az uyuyup hafta sonları bunu telafi etmeye çalışmanın doğru bir sağlık stratejisi olmadığını gösteriyor.

Dünya Sağlık Örgütü de zaten günde yedi-sekiz saat uyumayı tavsiye ediyor. Yedi-sekiz saatlik bir uyku beynin yıkanarak moleküler çöplerden arınması ve vücudun kendini yenilemesi için gerekli olan süredir. (9)


Benzer konuda hazırlanmış diğer makaleler 


Mehmet Saltuerk

++++++++++++++++++++++++
Dipl. Biologe Mehmet Saltürk
The Institute for Genetics
of the University of Cologne
++++++++++++++++++++++++

Kaynaklar

  1. Default-mode brain dysfunction in mental disorders: A systematic review
  2. A default mode of brain function
  3. Reactivation of hippocampal ensemble memories during sleep
  4. Hippocampal-cortical interaction during periods of subcortical silence
  5. Human immune system during sleep
  6. Impact of sleep restriction on local immune response and skin barrier restoration with and without “multinutrient” nutrition intervention
  7. A circadian gene expression atlas in mammals: Implications for biology and medicine
  8. Ad libitum Weekend Recovery Sleep Fails to Prevent Metabolic Dysregulation during a Repeating Pattern of Insufficient Sleep and Weekend Recovery Sleep
  9. Negative effects of restricted sleep on facial appearance and social appeal

Bu blogdaki makaleler bir başka yayın organında kaynak gösterilmeden yayınlanamaz, çoğaltılamaz ve kullanılamaz.

Baş dönmesine karşı ekşi

Limon ya da ekşi yemek, uzun yıllardan beri baş dönmesine karşı birçok kültürde kullanılan pratik bir tedavi yöntemi. Nesilden nesile bir şehir efsanesi gibi aktarılan ve neden işe yaradığı pek bilinmeyen bu yöntemin artık bilimsel bir açıklaması var.

2 Mart 2018 tarihli Science dergisinde yayınlanan bu araştırmanın bulguları ekşi ile ilgili bir araştırma yapılırken tesadüfen bulundu ama hemen belirtelim baş dönmesi ile tat duyusu arasındaki bu ilginç bağlantının tüm ayrıntıları henüz tam olarak aydınlatılmış değil.

Tat duyusu ve denge hakkında kısa bilgi: Denge, iç kulaktaki vestibüler sistem(denge sistemi) tarafından ayarlanır ve günlük yaşantımızı bu sistem sayesinde yere düşmeden sürdürürüz.

Baş dönmesi ya da diğer adıyla vertigo, kişinin kendi bedeni ile çevre arasında hissettiği sahte bir hareketlilik algısıdır. Vertigo, iç kulakta bulunan üç yarım daire şeklindeki yapılar içerisindeki otokoni/otolit adında biyo-minerallerin ya da diğer adıyla kulak taşlarının gelişigüzel hareket etmesiyle ortaya çıkar.

Tat alma duyusu ise dilde bulunan tat reseptörleri ile alınan başka bir vücut fonksiyonudur.

***

Birbirinden çok farklı bu iki vücut fonksiyonunun tek bir gen tarafından ayarlandığının ortaya çıkması oldukça sürpriz bir durum. Aşağıda bu ilginç araştırma ile ilgili makale bulunmaktadır. Makale, mümkün olduğunca bilim dışındaki okuyucuların anlayacağı formatta hazırlanmaya çalışıldı. Konuyu daha kapsamlı anlatabilmek için zaman zaman konu ile ilgili yan konulara da değinildi. Umarım bu yan konuları anlatırken okuyucunun dikkati dağılmaz. Zira araştırma zaten yeterince karmaşık bağlantılar içeriyor.

Tat duyusu nedir

Tat duyusu en eski ve en önemli duyularımızdan biridir. Değişik tatlar dilimizde bulunan özelleşmiş tat reseptörleri tarafından algılanırlar. Her ne kadar „Değişik tatlar, dilimizde bulunan değişik tat reseptörleri tarafından algılanır“ desek de tat alma konusunda asıl görevi genlerimiz üstlenir. Dilimiz, genler tarafından regüle edilen tat reseptörleri sayesinde, tatlı, tuzlu, acı, ekşi ve umami olmak üzere beş temel uyaranı algılayabilir ve ayrıca özel tat veya aromaların ince nüansları ayırt edebilir.

Tat reseptörleri ve genlerimiz arasındaki bağlantıların karmaşıklığı bir çok soruyu cevapsız bıraksa da, bu konuda yapılan çalışmalar bizi her geçen gün bir adım daha ileriye götürüyor.

Aşağıda bu çalışmalardan bir örnek bulunmaktadır. Ekşi algısı ilgili yapılan bu çalışmayı şaşırtıcı yapan ise araştırmanın sonunda konuyla hiç alakalı olmayan enteresan bir bağlantının ortaya çıkması… Şimdi bu ilginç araştırmayı dilimiz döndüğünce ve de gereksiz ayrıntılara girmeden anlatmaya çalışalım.

Ekşi algısı

Ekşi, nasıl bir tattır, hangi gen ekşi tadını algılamamıza yardımcı olur. Dilimiz ekşiyi nasıl emer ve beynimiz bu tadı nasıl işler. Bu soruların bazılarının cevabı bu makalede yer almaktadır. Bazılarının ise hala cevap bulunamadığı için hiç değinilmeyecek.

Ekşi nasıl bir tattır hücreye nasıl girer: Ekşi gıdaların pH’ları düşüktür, yani proton(H+ ) konsantrasyonları yüksektir. Başka bir ifadeyle, ekşiyi ekşi yapan şey protonlar dır ve bu protonlar gıdaların hücreye kendiliğinden girmesine engel olur, ancak özel iyon kanallarının içerisinden geçerek hücreye girebilirler.

Özel iyon kanalları: Yukarıda kısaca bahsedildiği gibi, ekşi de diğer tatlar gibi önce dilimizdeki lezzet algılayıcı reseptörler tarafından algılanır ve hemen ardından meydana gelen karmaşık biyokimyasal reaksiyonlar sonucu hücre zarında bulunan Özel Proton Kanalları açılır ve ekşi gıdalar(ya da asidik gıdalar) hücreye girer. Ama bu işlem bu kadar basit değil. Bu biyokimyasal sürecin bir de genler ile ilgili olan boyutu var ki, şimdiye kadar bu konuda pek fazla bir şey bilinmiyordu. Daha doğrusu sadece ekşinin hücre içine girmesine izin veren ama diğer tatları içeriye almayan bu Özel Proton Kanallarının hangi gen aracılığı ile açılıp kapandığı bilinmiyordu.

Çılgın keşif  

California Üniversitesi tarafından yapılan bir araştırma, ekşinin hücre içine alınması konusundaki bilgilerimizi bir adım daha ileriye götürerek Özel Proton Kanallarının hangi gen tarafından regüle edildiğini anlamamızı sağladı. Araştırma sonunda dördüncü kromozomda bulunan Otopetrin 1 (OTOP1) adındaki bir genin hücrelerde proton kanallarının açarak ekşinin hücre içine girmesine olanak verdiği tespit edildi.

Ama bu keşfi sıradan olmaktan çıkartan, daha doğrusu şaşırtıcı yapan birbiriyle bağlantısı olmayan iki vücut fonksiyonunun Otopetrin 1 geni tarafından ayarlanıyor olması. Daha açık bir ifadeyle söylemek gerekirse; Bizi eksiye karşı duyarlı yapan gen aynı zamanda dengemizi de sağlıyor.

Otopetrin1 geninin bilinen fonksiyonu

Otopetrin 1 geni, otopetrin adındaki proteini kodluyor. Bu protein, iç kulakta yatay ve düşey dengeyi sağlamakla görevli otokoni/otolit adında biyo-minerallerin oluşumunu sağlıyor. Otopetrin ayrıca otokoni/otolit oluşması için gerekli olan pH değerinin kararlı bir durumda kalmasını da sağlıyor. Ayrıca daha önce yapılan çalışmalar ile otopetrin 1 geninin sağlıklı formunun farelerde dengeyi sağladığı, genin genetik bir müdahale ile işlevsiz hale getirilmesi durumunda farelerin dengede kalma problemi yaşadığı teyid edilmişti. (1)

Otopetrin 1 gen ailesi dil ve kulak dışında da faal olabilir 

Otopetrin-gen-ailesine ait proteinlerin önceleri sadece iç kulaktaki vestibüler sistemde(denge sistemide) görev aldığı, tat almayla ilgili görevinin sadece özel proton kanallarında kalsiyum akışını düzenlemek ile sınırlı olduğu düşünülüyordu. Ama bu çalışma ile bunun böyle olmadığı aksine otopetrin proteinin Özel Proton Kanalları oluşumunda bizzat rol aldığını gösterdi.(2)

Sonuç

Araştırmacılar ekşi lezzettini algılamaktan sorumlu geni ararken karşılarına dengeyi sağlayan genin çıkacağını hiç tahmin etmiyorlardı. Ancak şaşırtıcı fonksiyonların ortaya çıkması bu kadarla sınırlı kalmayabilir! Zira daha önce yapılan bazı çalışmalar, otopetrin gen familyasindaki bazı genlerin farklı doku ve organdaki hücrelerde çeşitli görevler aldığını zaten göstermişti. Bu yüzden otopetrin 1 gen ailesinde bulunan diğer genlerin dil ve kulak dışında gözlerde, sindirim sisteminde ve cinsel organda da faal olabilirler! (2)

Mehmet Saltuerk

++++++++++++++++++++++++
Dipl. Biologe Mehmet Saltürk
The Institute for Genetics
of the University of Cologne
++++++++++++++++++++++++

Kaynaklar

  1. Training and aging modulate the loss‐of‐balance phenotype observed in a new ENU‐induced allele of Otopetrin 1
  2. An evolutionarily conserved gene family encodes proton-selective ion channels

Bu blogdaki makaleler bir başka yayın organında kaynak gösterilmeden yayınlanamaz, çoğaltılamaz ve kullanılamaz.

Yüksek tansiyonun alzheimera etkisi

Tansiyon Nedir: Tansiyon, kalbin kanı pompalarken kan damarları içinde oluşturduğu basınçtır. Kan basıncı genellikle mmHg (milimetre civa) olarak verilir ve bu birim aynı zamanda AB içinde yasal bir ölçüm birimidir.

Sağlıklı bir vücutta kan basıncı doğrudan Kardiyak debiye ve Damar direncine bağlı olarak vücut tarafından kendiliğinden düzenlenir.

  • Kardiyak çıkış: Belirli bir sürede kalpten pompalanan kanın hacmidir. (Yorucu bir işte veya sporda dakikada yedi litreye kadar kan pompalanırken, istirahat halinde bu miktar 5 litre civarındadır.)
  • Damar direnci: Kan damarlarının, kalbin pompalama gücüne karşı koyduğu damar direncidir.

Kan basıncı, bir tansiyon aleti ile aşağıdaki formüle göre belirlenir:

Kan basıncı = Kardiyak çıkış x Damar direnci

Günlük yaşamda kan basıncını etkileyen birçok faktör bulunmaktadır. Stres, fiziksel aktivite, ani pozisyon değişikliği, yiyecekler bunlardan bazılarıdır.

Ayrıca kan basıncı gün içerisinde doğal dalgalanmalar da gösterir. Örneğin, uyurken gece saat üç sularında kan basıncı en düşük seviyedeyken sabah saatlerinde güne başlarken yükselir. Öğleye doğru ise tekrar düşüşe geçer. Öğleden sonra akşam saat yediye kadar tekrar yükseliş devam eder. Özetle söyleyecek olursak, gün içerisinde kan basıncını etkileyen birçok faktör bulunmaktadır, bu yüzden bir seferlik ölçüm tansiyon konusunda kesin bir fikir vermez.

Yüksek tansiyon, önlenebilir ölümlerin başında yer alan çok yaygın bir sağlık sorunudur. Tedavi edilmeyen yüksek tansiyon çeşitli organ hasarlarına neden olmaktadır. Tansiyonun uzun süre 140/90 mmHg üzerinde seyretmesi halinde özellikle kalp, kan damarları, beyin, böbrekler ve gözler risk altındadır.

Ancak yüksek tansiyonun zararları bunlarla sınırlı değil değil. Yapılan araştırmalar, yüksek tansiyonun demans gibi hastalıkları teşvik ederek kişinin hafızasına da zarar verebileceğinin ipuçlarını veriyor. Bu konuda birçok araştırma bulunmaktadır. Aşağıda JAMA dergisinin 28 ocak 2019 tarihli sayısında yayınlanan bir makale yer almaktadır.

***

Yüksek tansiyonun hafızaya zararı

Winston-Salem’deki Wake Forest Üniversitesi’nden Jeff Williamson ve arkadaşları, yüksek tansiyonun yaşlılarda bilişsel bozulmaya sebep olup olmadığını, eğer oluyorsa demansın öncü semptomları olarak kabul edilen dikkat ve düşünme bozukluğunun hangi değerden itibaren başladığını araştırdılar.

Araştırma nasıl yapıldı

Ekip işe önce 50 yaş üstü hipertansiyonlu yaklaşık 9,300 kişiyi rastgele iki gruba ayrılarak başladı. Ekip daha sonra birinci gruptaki hastaların sistolik kan basıncını kritik olmayan 140 mmHg değerine, ikinci gruptaki hastaların kan basıncını ise 120 mmHg ve daha altına düşürmek için medikal müdahalede bulundu.

Katılımcıların yaklaşık üç buçuk yıl sonra yapılan sağlık muayenelerinde ikinci grupta yer alan, yani büyük tansiyonu(sistolik) 120 mmHg’nin altına düşürülen grupta demansın öncüsü olarak kabul edilen Hafif bilişsel bozulmanın daha az olduğu, tansiyonun 140 mmHg sınırına çekilen grupta ise tedavinin pek etkili olmadığı bulundu.

Ayrıca yapılan genel sağlık kontrollerinde kan basıncı 120 mmHg ve altına düşürülen gruptaki katılımcıların genel sağlık durumlarının diğer gruba göre farkedilir derecede iyi durumda olduğu, kalp krizi gibi kardiyovasküler hastalıklardan ölüme oranının diğer gruba göre dikkat çekici bir oranda daha az olduğu tespit edildi.

Araştırma yarıda kesildi

Uygulanan farklı tedavi nedeni ile birinci gruptaki deneklerin daha fazla zarar görmemesi için çalışma planlanan süreden daha önce sonlandırıldı. Ama ekip takip eden yıllarda deneklerin hafızasındaki değişikleri gözlemlemeye devam etti.

Beş yıl sonra yapılan ikinci değerlendirmede kan basıncı 120 mmHg’nin altına düşürülen gruptaki bireylerde diğer gruptaki bireylere göre Hafif bilişsel bozulmanın önemli ölçüde az olduğu tespit edildi.

Demans riski ne durumda?: Beşinci yılın sonunda yapılan incelemede kan basıncı 120 mmHg’de tutulan grupta her ne kadar demans riskinin diğer gruba göre hafifçe azaldığı görülse de bunun istatistiksel olarak anlamlı bir etki olmadığını belirtmek gerekir. Ancak bunun sebebinin araştırmanın erken sonlandırılmasıyla ilgili olacağı düşünülüyor. Yani birinci gruptaki deneklere başlangıçta planlanan süreden daha önce müdahale edilmesinden kaynaklanıyor olabilir.!!!

Yeni araştırmalara başlandı

Bu çalışma her ne kadar yarıda kesilmiş olsa da yüksek tansiyonun Alzheimerın öncüsü olarak kabul edilen Hafif bilişsel bozulmaya sebep olduğunu açık bir şekilde gösteriyor. Bu nedenle, bu çalışma gelecekte yüksek tansiyon ile hafıza kaybı arasındaki yapılacak çalışmalara ilham kaynağı olacağı kesin gibi. Nitekim bu konuda çalışmalara başlandığı bildiriliyor.


Benzer konuda hazırlanmış diğer makaleler


Mehmet Saltuerk

++++++++++++++++++++++++
Dipl. Biologe Mehmet Saltürk
The Institute for Genetics
of the University of Cologne
++++++++++++++++++++++++

Kaynaklar

Bu blogdaki makaleler bir başka yayın organında kaynak gösterilmeden yayınlanamaz, çoğaltılamaz ve kullanılamaz.

Sporun Alzheimer’a karşı koruyucu etkisi

Alzheimer, ilk olarak 1906 yılında hekim Alois Alzheimer tarafından ölen bir kadın hastanın beynindeki karakteristik değişikliklerin belirlenmesi ile tanımlandı ve bu önemli keşfe doktorun soyadı verildi.

Alzheimer ve Demans terimleri  toplumda genellikle eş anlamlı olarak kullanılsa da bu doğru değildir. Alzheimer, demansın en yaygın formudur ve bilimsel topluluklarda kabul gören görüş göre tüm Demans vakalarının en az % 60’ı Alzheimer dır.

Alzheimer, istisnalar olsa da bir yaşlılık hastalığıdır. Hastalık 65 yaşındakilerin yaklaşık % 2’sini, 70 yaşındakilerin % 3’nü, 75 yaşındakilerin % 6’sını, 85 yaşındakilerin % 20’sini etkiler. Hastalık 85 yaşın üzerindekilede azalma trendine girer. Bu azalma, hastaların çoğunun 85 yaşına kadar ölüyor olmasından kaynaklanmaktadır.

Araştırmalar, üçte ikisinin gelişmekte olan ülkelerde olmak üzere dünya çapında yaklaşık 46 milyon insanın Alzheimerdan etkilendiğini gösteriyor. 2050 yılına kadar bu sayının 131,5 milyona yükselmesi bekleniyor.

Hastalığın seyri

Hastalık, Tau-protein‘nin yapısının bozulması ile başlayan ve bu proteine fosfat moleküllerinin bağlanması ile devam eden daha sonra beyindeki sinir hücreleri üzerinde β-Amyloid plaklarının birikmesi ile son bulan uzunca bir süreçten oluşmaktadır. Bu sürecin erken safhasında yakın geçmişle ilgi hafıza kaybı, ilerleyen safhalarında sıkça görülen unutkanlıklar ve son safhada tanıma fonksiyonlarında bozukluklar, demans daha sonra da alzheimer başlar.

Sporun Alzheimer’a karşı koruyucu etkisi

Evrensel kültürün vazgeçilmez bir parçası olan sporun insan hayatında birçok olumlu etkisi bulunmaktadır. Fiziksel performansı geliştirmesi, tansiyonu kontrol altında tutması, bağışıklık sistemini iyi bir şekilde çalıştırması, stresle başa çıkmada yardımcı olması, kan şekerini kontrol etmesi, kalbi genç tutması, kas ve kemikleri geliştirmesi gibi birçok olumlu etkisi bulunmaktadır. Sporun bu olumlu etkisinden birçok doku ve organ payını almaktadır.

Spordan olumlu etkilenen bir organımız da beynimizdir. Mekanizması pek bilinmese de uzun zamandan beri sporun beyni fit tuttuğu biliniyor. Bu yüzden sporun alzheimer ve demans gibi hastalıkları önlediği veya en azından oluşumunu geciktirdiği varsayılıyor.

Bu varsayım gerçek mi? Eğer gerçekse koruyucu etkisinin nedenleri ve mekanizmaları nelerdir?

Konunun açıklığa kavuşturulması için bir başlangıç noktasının belirlenmesi gerekiyordu. Daha önceki yapılan çalışmalar, spor esnasında kaslar tarafından salınan İrisin adındaki haberci maddenin iyi bir başlangıç noktası olabileceğini gösteriyordu.

İrisin nedir

İrisin, omurgalılarda, kaslar tarafından salınan bir proteindir. İlk olarak 2012’de Boston’daki Harvard Üniversitesi’nde bir araştırma ekibi tarafından tanımlandı ve adını eski Yunanda Gökkuşağı tanrıçası olan İris den aldı.(1) İrisin, fiziksel aktivite sırasında kas hücreleri tarafından öncü İrisin olarak bilinen FNDC5 şeklinde üretilir. On haftalık düzenli fiziksel aktivite sonrasında irisin seviyesi ikiye katlanır.

Şimdiye kadar İrisin’in faydalı birçok fonksiyonu keşfedildi. Örneğin, beyaz yağ dokusu hücrelerini kahverengi yağ dokusu hücrelerine çevirerek zayıflamaya yardımcı olması, vücudun glukoz ekonomisini düzenleyerek kan şekerini düşürmeye yardımcı olması, sinir hücrelerinin oluşumunu uyarması bunlardan bazılarıdır.

Beyinde FNDC5 adında bir proteinin eksikliği

Brezilya’daki Rio de Janeiro Eyalet Üniversitesi’nin yaptığı bir araştırmada sporun alzheimer karşı olumlu etkisi araştırıldı ve oldukça açık bulgulara ulaşıldı. Yapılan araştırmada, alzheimer hastalarının beyninde İrisin’in öncüsü olan FNDC5 adındaki bir protein’in konsantrasyonunun, sağlıklı bireylere göre dikkat çekici bir şekilde düşük olduğu tespit edildi. Buradan yola çıkan ekip düşük FNDC5 seviyesi ile bilişsel bozukluk arasında bir ilişki olabileceği fikrine vardı ve bu hipotezin doğru olup olmadığını araştırmak amacıyla sağlıklı fareleri genetik ve farmakolojik yöntemler kullanarak FNDC5 seviyesini düşürdüler ve tahmin edildiği gibi fareler aniden Alzheimer benzeri semptomlar sergilemeye başladılar.

Deney tersine çevrildiğinde, yani beyindeki İrisin seviyesi yükseltildiğinde farelerin tekrar eski sağlığına kavuştuğu tespit edildi.

Sporun etkisi var mı

Yukarıda kısaca özeti verilen deneyde görüldüğü gibi alzheimer yapılmış farelerin beynine dışarıdan irisin takviyesi yapıldığında farelerin sağlığına kavuştuğu görüldü. Benzer bir etkinin düzenli bir spor programıyla da başarılabileceğini varsayan ekip, bu sefer de genetik olarak alzheimer yapılan fareleri her gün düzenli olarak yüzme havuzunda eksersizi yaptırdılar. Günlük yüzme ünitelerini tamamlayan fareler, kontrol grubundaki farelere göre daha az hafıza kaybı yaşadığı ve yapılan patolojik araştırmalarda ise farelerin beyindeki FNDC5/irisin konsantrasyonunu arttırdığı tespit edildi. Ama daha da önemlisi farelerin beyninde artan İrisin miktarı ile birlikte Alzheimer hastalığının tipik bir belirtisi olan beta-amiloid plak üretiminin de azaldığı tespit edildi.

İrisin nasıl çalışıyor 

Peki İrisin’in bu olumlu etkisi nasıl ortaya çıkıyor? Yapılan ileri çalışmalar, irisin’in beta-amiloid plaklarını sentezleyen bazı genlerin aktivitesini baskıladığını ve sinir hücrelerindeki dendrit kaybını önlediğini gösteriyor. Ayrıca yapılan ileri çalışmalarda elde edilen bir başka olumlu sonuçta beyinde anıların uzun süre saklanması için gerekli olan CREB(cyclic amp-response element binding protein) adında bir proteinin üretimini teşvik ettiğini gösteriyor.

Yeni tedavi yaklaşımları için umut

Bu çalışma bize ilk olarak spor yaparken üretilen İrisin’in kas hücrelerinden beyne geçerek hafıza kaybını engellediğini gösterdi. Spor yaparken üretilen İrisin’in beyne nasıl geçtiği, farelerde olduğu gibi insanlarda da benzer olumlu etki yapıp yapmayacağı şimdilik bilinmiyor. Ama bu konuda bilinen bir şey var, o da uzun yıllar düzenli spor yapan yaşlıların beyninin bilinçli düşünmeden sorumlu bölgesi frontal korteksin hiç spor yapmamış yaşıtlarına göre çok daha iyi bir durumda olduğu. Bununla İrisin’in bir ilgisi olabilir mi? Bu konuda bir şey söylemek için ileri araştırmalara ihtiyaç var. Eğer ileri çalışmalarda İrisin’in insanlarda da aynı olumlu etkiyi gösteridigi tespit edilirse alzheimer hastalarında yeni tedavi seçeneklerinin yolu açılmış olacak.(2)


Konu ile ilgili hazırlanmış diğer makaleler


Mehmet Saltuerk

++++++++++++++++++++++++
Dipl. Biologe Mehmet Saltürk
The Institute for Genetics
of the University of Cologne
++++++++++++++++++++++++

Kaynak

  1. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis
  2. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models

Bu blogdaki makaleler bir başka yayın organında kaynak gösterilmeden yayınlanamaz, çoğaltılamaz ve kullanılamaz.