RF04 – the day we were waiting for

It’s not a surprise, that when you are looking for clouds to measure, it is very likely that you find them as well at the airport you plan to operate from. That’s what we had to deal with today. But pilots were convinced that it was doable, we did it, and it turned out to be the day that you do not want to miss.

It has always been the plan to stay local and find a good cloud deck to test different radar settings and get the first real differential absorption signal from the two GRaWAC channels. We found suitable clouds East of Kiruan on a 100 nm North-South leg that we followed four times before being back at Kiruna after about 4.5 hours. The data we collected look beautiful and should be the ones we needed to make this campaign a full success.

Overview of the First Three Flights

As we reach the midpoint of HAMAG, let’s reflect on the campaign thus far. Our initial three flights have covered the region south and southeast of Kiruna and over the Bothnian Bay. The map below with a digital elevation model and sea ice concentration from the University of Bremen provides an overview of our flight trajectories.

The sea ice concentration map illustrates the closed sea ice in the northern bay and the open ocean towards the south on 9 February 2024. The transect of flight RF01 on this date covered both areas of the Bothnian Bay. Meanwhile, the other two flights focused on low clouds and fog formations over land.

We will continue to update this map to include upcoming research flights.

An overview map of the HAMAG flight tracks with terrain elevation (Berry et al., 2019) and sea ice concentration (Spreen et al., 2008).

RF03 – sensing the low-level clouds with different settings

Today’s flight planning and go or no-go decision have not been easy. The overall situation has been similar to yesterday’s with haze all over Northern Sweden and Finland and the area around Kiruna airport showing a sunny sky with broken low-level clouds only, but with a forecast saying low visibility and difficult landing conditions throughout the day. After long discussions, we decided to go for a short survey, staying local to test different settings for GRaWAC to sense the low-level haze.

Up in the air, we tried different settings with the radars to see which works best with the thin haze. Although the haze was very thin and the ground was visible, both got a signal from time to time. To get an idea of temperature and humidity stratification, two dropsondes have been launched.

Second research flight

High pressure conditions gave us wonderfully sunny and crisp winter weather this weekend, but also made all the clouds disappear! We decided to target forecasted haze conditions towards Finland around Sodankylä to test our new radar GRaWAC’s sensitivity limits.
Good news: higher sensitivity to detect thin layers of cloud and haze, even close to the surface, compared to our existing cloud radar MiRAC! With today’s tests, we are optimistic that we will be able to detect Arctic haze over sea ice conditions around Svalbard, our survey area for upcoming campaigns where low-level haze is crucial for radiation characteristics. The fog today was mysterious – it looked like thicker clouds from far away, but once we reached the decks, conditions were such as seen below in the photo: we could see through it easily down to the ground. Our radar detected a 30m thickness.

haze conditions as seen between Kiruna and the waypoint which we headed to

First successful flight

Today, we took off at 10 am for the first survey flight over Bothnian bay – GRaWAC’s, our new G-band radar system’s, first time in the air! Fair weather conditions over the bay and great conditions for emissivity measurements over the frozen, clear-sky Northern bay part. Clouds were scarce, but once we reached open ocean, we started seeing them from the window, and in our radar measurements, well organized.

Next flight will be on Monday – stay tuned!

Instrument integration in Bremen

Cables, converters, bellypod, racks, seat plan, dropsonde launcher, calibration, ground test, documentation, certification, metric or imperial … … … curious to learn more about how integration looks like?

Together with the AWI engineers and KennBorek mechanic, we started installing our instruments aboard the Polar-6 aircraft in the hangar at Bremen airport. Generally, the instruments need to be installed securely aboard the aircraft according to the campaign specific cabin layout. Microwave radiometer and lidar are installed in the cabin with a lookout through the belly, while both cloud radars are attached below the plane in a bellypod.

Very good news for the Arctic!!!!

Time to celebrate! We received the great news that the CRC/TRR “Arctic Amplification (AC)³” will be funded by DFG for another 4 years (2024-2027). We are looking forward to continuing to do fascinating research in the high north!

Find below some press releases where you can read more about that:

Kerstin and Vera at CFMIP

Last week, Kerstin and Vera participated in the joint CFMIP-GASS* meeting in Paris. Apart from presentations and discussions about clouds, convection, circulation, and climate sensitivity, we even participated (virtually) in the Tour de France during the lunch break!

*CFMIP: Cloud Feedback Model Intercomparison Project & GASS: Global Energy and Water Exchanges (GEWEX)’s Global Atmospheric System Studies