Polarstern Cruise PS131 – ATWAICE (WALSEMA)


Polarstern cruise PS131 (ATWAICE) was a multidisciplinary expedition to investigate sea ice melting processes in the warming Arctic, ocean currents affecting nutrient supply for flora and fauna, ocean impacts on the melt of glaciers at Greenland’s east coast, and to deploy seismometers at the Aurora Vent Field. The expedition started on 28th June 2022 in Bremerhaven and led us to the Fram Strait, the marginal sea ice zone north-west of Svalbard, to fast ice at the east coast of Greenland and to Scoresby Sund, before returning to Bremerhaven on 17th August 2022.


Our working group also joined the expedition with atmospheric measurements using microwave radiometers (HATPRO and MiRAC-P) and radiosondes (weather balloons). The microwave radiometers faced the sky and primarily measured radiation emitted by the atmosphere (oxygen, water vapor, and liquid droplets). An additional sky camera consisting of a GoPro Hero 10 Black and an infrared sensor was mounted next to the radiometers on the guard rail of Polarstern to give us information about the sky conditions.
From the HATPRO data, we could already retrieve preliminary temperature and humidity profiles, as well as the total amount of water vapor (known as Integrated Water Vapour or IWV) and cloud liquid water path (LWP) with a high temporal resolution (1 second). Complementary to the radiometers, radiosondes give us high vertical but low temporal resolution of temperature and humidity profiles. An example of this is shown for an extraordinary warm and moist air intrusion event from 15th to 19th July 2022. IWV peaked at 35 kg m-2 (comparable to mid-latitude summer conditions), and the temperatures reached more than 18 °C at a few hundred meters altitude.
With a mirror construction designed by Pavel Krobot and Rainer H.-Lind and attached to the radiometers, we could also directly observe the radiation emitted by the sea ice and ocean. These measurements will later be compared to skin temperature measurements of the sea ice taken by an infrared camera to estimate the sea ice emissivity. Another GoPro is also mounted on the infrared camera to provide a visual context of the sea ice conditions.

Wetoo: how it all started

Why this project

Women in high-level scientific positions are strongly underrepresented in Western society compared to men. The project tackles this problem in a constructive way, which is not pointing just at claiming rights that should be granted, but showing how women with their diversity can genuinely improve the current scientific environment.

Some numbers

In recent times, the number of female students in Science, Technology, Engineering, and Mathematics (STEM) has increased significantly, bringing to an almost equal representation of both sexes in the student body. Also, in media and previously dominated male fields, women occupy now a larger space. All of a sudden, it seems that the possibility for women to affirm themselves is open and walkable. But is it so?

FIgure 1: Degree of qualification in scientific disciplines specified by gender, between 2006 and 2016, at the university of Cologne, Germany. Source: https://www.portal.uni-koeln.de/datenundfakten.html

Despite the appearance, the presence of women in leading roles has not changed that much.  The percentage of women currently working in leading positions in academia is much lower than the corresponding number of men. However, this trend is not following the tendency observed in the student body up to the Ph.D. level (see Figure 1 for the University of Cologne).

But why is it so?

Why are there so few women in Western society pursuing scientific careers? Recently, a lot of research has tried to shed light on the main reasons for such discrepancies, finding various motivations (Corbett et al., 2015). Isolation, lack of role models and no sense of belonging, perception of the working place as competitive and hostile, unconscious and/or implicit biases driven by stereotypes, and incompatibility between the demands of work responsibilities and family life. All these causes often push women to choose family over work. Biases are still present also in the evaluation process, affecting the chances of a woman getting a position.

To what extent does each of these factors play a role? What do female scientists think about that? What’s their experience? Now is the time to listen to their voices and their stories.

Our goal

We believe that this video documentary can encourage young female researchers to believe in themselves and connect with other women, breaking the loneliness they face from gender discrimination. Moreover, these stories can inspire teenagers to pursue a scientific career.

All the info on the project

The project started from an idea discussed during a coffee break at the Institute of Geophysics and meteorology and a bunch of people helped in different ways to make that tiny idea evolve into a video documentary. So, even if the project was created and led by Claudia Acquistapace, and the final authors are Claudia Acquistapace and Valeria Lo Meo, we try here to mention all those that contributed to it: Thirza van Laar, Julia Munchowsky, Carolina Doran, Feray Ünlü, Rene’ Weißing, Anna Werma, Ute Gärtel, Susanne Crewell, Dario Valenzano, Miriam Janke, Annika Dähne, Nina Steinweg, Sigrun Korsching, Karin Boessenkool, Adam Polczyk, Fabio Magnifico, Jürgen Rees, Katrin Schrader, Markus Ritschel, Harmonie Jimenez, Selin Kandemir, Sabrina Schnitt.

It would not have been possible without the administrative support of Alma Bojcic, Ramize Iseni, Estelle Knoblauch, Annika Dahne, nor without the members of the gender equality commission that approved the project: Univ.-Prof. Dr. Thomas Langmann (Chairman), Univ.-Prof.in Dr. Martina Fuchs, Dr. Katrin Schrader, Dr. Jan Kruse, Silke Koppenhöfer, Dr. Ralf Müller, Viktoria Labus, Metin Serefoglu.

Many institutions were involved in the filming:

  • Institute for Geophysics and Meteorology, Department of Geosciences
  • Institute of Inorganic Chemistry, Department of Chemistry
  • Faculty of Mathematics and Natural Sciences
  • Gender Equality Commission of the University of Cologne
  • Referat Gender & Diversity Management  
  • University Administration Communications & Marketing
  • Institute for General Didactics and School Research
  • University of Cologne
  • Division 44.2 Travel cost center 
  • CECAD – Cluster of Excellence
  • Research Vessel Maria. S. Merian board

as well as some external partners:

The wetoo documentary on women in science was funded by:

  • The Financial Fund for the Implementation of the Statutory Equal Opportunity Mandate of the University of Cologne
  • The Atmospheric Water Cycle and Remote Sensing group from the University of Cologne
  • The Faculty of Mathematics and Natural Sciences

Finally, I want to especially thank all the female scientists who spent their time contributing to the project: Lena Pernas, Fernanda Pinheiro, Jane Reznick, Simone Morak, Eva Karatairi, Tamara Gigolashvili, Sabine Graf, and the ones that were interviewed in the documentary, for being so strong, direct and sincere: Natalia Kononenko, Hajar Maleki Anna Kathrin Schmidt-Verma, Claudia Acquistapace. Shaista Ilyas, Sanjay Mathur.

The backstage was curated by Tina Burg and Luciano Perbellini

Cloud radar observations in Ny-Ålesund (Svalbard): JOYRAD94’s shift is over – MiRAC-A took over

written by Mario Mech

Far in the North on Svalbard at the AWIPEV research station in Ny-Ålesund, the Institute for Geophysics and Meteorology operates a set of cloud remote sensing instruments in the framework of the (AC)3 DFG program. The idea of setting up instruments that far in the North is to learn more about Arctic clouds, like their structure, lifetime, or the role they play in the dramatic change of Arctic climate.
A key instrument of the setup is a cloud radar measuring at 94 GHz. Such a cloud radar shows the vertical structure of Arctic clouds by measuring the reflected signal send upwards in different levels (radar reflectivity).

The intensity of the reflected signal depends thereby on the size, amount, and shape of cloud and precipitation particles (hydrometeors) found in the atmosphere. Easily speaking, the more red the color the thicker the cloud or the more precipitation is present. In addition to the radar reflectivity, the cloud radar can measure the vertical motion of the hydrometeors and by that where up- or downward motion is present or distinct between clouds and precipitation.

During the last three years, JOYRAD94 has done a perfect job in Svalbard. But now it is time for some maintenance at the manufacturer. Therefore it needs to be de-installed, packed and shipped back to Germany. To do that, a team from our institute has traveled to the Arctic for two weeks. Since we definitely do not want to be without cloud radar measurements, our second cloud radar MiRAC-A, usually operated onboard the Polar 5 aircraft, has been shipped up there and will take over JOYRAD94’s job.
So today a huge crane took JOYRAD94 from the roof of the AWIPEV observatory building and lifted up MiRAC-A. It can make you quite nervous to see several hundred thousand euros hanging on four ropes. But the crane driver was a genius and it all went smoothly. After a bit of screwing, drilling, fixing, and configuring, MiRAC-A was set up and continued the important job JOYRAD94 did the last years – collecting data on Arctic clouds.

How to prepare for an Arctic campaign (part 2)

Part of preparing for a climate study in the Arctic involves preparing for polar bear emergencies.  Blog followers will ask themselves: wait, but aren‘t we flying? Yes! But…safety training includes polar bear protection, as emergency landing on the ice is (an unlikely) possibility.

An image from the Arctic landscape… and a typical road sign in that region (photo credits: Pavel Krobot)

The ice is the home of the polar bears. Bears are very curious, and extraordinarily well adjusted to the Arctic environment. For a polar bear, a group of scientists means a great opportunity for some extra dinner. So even though many of us are faced by comments around „You‘re going to the Arctic: I hope you will see a polar bear“ we actually really want to avoid seeing one (other than from the plane).

But you never know, so better to prepare for the emergency case.  This is why 6 of us spent a day at AWI Bremerhaven to learn about polar bears and their behaviors.   We learned how to avoid meeting a bear, how to scare bears (hint: they don‘t like loud noises, including banging on cooking pots), and what to do when you see one from far away. For the troubling worst-case scenario of a bear attack, we were also trained on how to handle a rifle.

Insights from the group include: rifles are surprisingly heavy; we were lucky to have Arctic-like wind conditions as storm „Ylenia“ was passing the Bremerhaven area during our training; and fingers crossed for spotting a bear from the air!

#AC3 #funding #ArcticAmplification (AC)3 AISAM Arctic Atacama Atmospheric boundary layer AWI Bremenhaven AWIPEV AWIPEW CFMIP-GASS climate cloud radar cloud radars clouds COST gender gap GEWEX HALO HALO-(AC)³ HAMAG HATPRO hyperarid ITCZ JOYRAD94 Kölnische Rundschau Maria S. Merian MiRAC-A model intercomparison Ny-Ålesund outreach Polar 5 Polar 6 PolarStern Precipitation PROBE COST Action radiosondes STEM STEMM Svalbard tropical convection videodocumentary Water Vapor Wetoo Winter school women in science

From: Sabrina Schnitt

Price for communication awarded to video on atmospheric boundary layer!

On Wednesday 16 February 2022, the video “Atmospheric boundary layer: the layer where we live” received a prize in a contest organized by the Italian Meteorological Association (AISAM) as part of their fourth National Congress, held in Milan, Italy. The congress offers the opportunity for the Italian scientific community dealing with atmospheric sciences, meteorology, and climatology to promote reflections on these issues.

The innovative graphics in the video explains in an intuitive way what happens in the atmospheric layer closest to the Earth surface, where we all live. The atmospheric boundary layer (ABL) is the layer closest to the Earth’s surface within which most human activities take place.

The video was funded by the PROBE COST action, a network of European scientists working on profiling the atmospheric boundary layer using remote sensing instruments. So why are we posting it here? Because the video was realized by the science communication manager of the action, Claudia Acquistapace, who is a researcher working in the AWARES group.

The vertical profile of atmospheric thermodynamic parameters in the ABL impacts weather, air quality, and climate. Surface sensor networks and satellite observations do not provide sufficient information on the high temporal variability and strong vertical gradients experienced in the ABL.

What do you think about the video? Do you like it? Do you have comments? let her know, she is eager to improve. You can also contact her (cacquist@meteo.uni-koeln.de) if you want to get to know how to practically realize a video like this… or simply you are curious or how much it cost 🙂